Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 338 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.142953508956$, $\pm0.411301082306$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1115187084.1 |
Galois group: | $D_{4}$ |
Jacobians: | $64$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10258$ | $163697164$ | $2083757311816$ | $26583539397646336$ | $339454940306413840018$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12821$ | $1444148$ | $163041825$ | $18424254169$ | $2081954063522$ | $235260607211593$ | $26584442422056769$ | $3004041938085609524$ | $339456738965762503061$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=60 x^6+37 x^5+59 x^4+83 x^3+92 x^2+31 x+19$
- $y^2=10 x^6+96 x^5+87 x^4+70 x^3+98 x^2+43 x+5$
- $y^2=56 x^6+110 x^5+83 x^4+64 x^3+60 x^2+108 x+89$
- $y^2=64 x^6+89 x^5+47 x^4+50 x^3+55 x^2+102 x+92$
- $y^2=89 x^6+26 x^5+8 x^4+105 x^3+9 x^2+9 x+68$
- $y^2=46 x^6+74 x^5+20 x^4+72 x^3+59 x^2+33 x+80$
- $y^2=50 x^6+49 x^5+51 x^4+26 x^3+33 x^2+26 x+66$
- $y^2=57 x^6+92 x^5+78 x^4+101 x^3+47 x^2+18 x+83$
- $y^2=85 x^6+106 x^5+73 x^4+9 x^3+77 x^2+110 x+89$
- $y^2=101 x^6+44 x^5+105 x^3+60 x^2+26 x+74$
- $y^2=91 x^6+64 x^5+31 x^4+102 x^3+50 x^2+50 x+88$
- $y^2=41 x^6+78 x^5+34 x^4+72 x^3+68 x^2+13 x+17$
- $y^2=51 x^6+68 x^5+43 x^4+78 x^3+22 x^2+78 x+44$
- $y^2=101 x^6+18 x^5+15 x^4+99 x^3+27 x^2+106 x+22$
- $y^2=42 x^6+64 x^5+37 x^4+30 x^3+89 x^2+72 x+69$
- $y^2=93 x^6+28 x^5+94 x^4+24 x^3+75 x^2+58 x+77$
- $y^2=24 x^6+89 x^5+53 x^4+68 x^3+111 x^2+58 x+82$
- $y^2=84 x^6+72 x^5+15 x^4+24 x^3+12 x^2+84 x+6$
- $y^2=105 x^6+32 x^5+75 x^4+92 x^3+71 x^2+33 x+8$
- $y^2=70 x^6+25 x^5+107 x^4+60 x^3+58 x^2+112 x+21$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1115187084.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_na | $2$ | (not in LMFDB) |