# Stored data for abelian variety isogeny class 2.113.az_na, downloaded from the LMFDB on 11 October 2025. {"abvar_count": 10258, "abvar_counts": [10258, 163697164, 2083757311816, 26583539397646336, 339454940306413840018, 4334527911402380946297856, 55347539385956905009239345682, 706732565785722307282350894833664, 9024267965472711675304764046537990984, 115230877638251784299563598158215318253324], "abvar_counts_str": "10258 163697164 2083757311816 26583539397646336 339454940306413840018 4334527911402380946297856 55347539385956905009239345682 706732565785722307282350894833664 9024267965472711675304764046537990984 115230877638251784299563598158215318253324 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.142953508955699, 0.411301082306249], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 89, "curve_counts": [89, 12821, 1444148, 163041825, 18424254169, 2081954063522, 235260607211593, 26584442422056769, 3004041938085609524, 339456738965762503061], "curve_counts_str": "89 12821 1444148 163041825 18424254169 2081954063522 235260607211593 26584442422056769 3004041938085609524 339456738965762503061 ", "curves": ["y^2=60*x^6+37*x^5+59*x^4+83*x^3+92*x^2+31*x+19", "y^2=10*x^6+96*x^5+87*x^4+70*x^3+98*x^2+43*x+5", "y^2=56*x^6+110*x^5+83*x^4+64*x^3+60*x^2+108*x+89", "y^2=64*x^6+89*x^5+47*x^4+50*x^3+55*x^2+102*x+92", "y^2=89*x^6+26*x^5+8*x^4+105*x^3+9*x^2+9*x+68", "y^2=46*x^6+74*x^5+20*x^4+72*x^3+59*x^2+33*x+80", "y^2=50*x^6+49*x^5+51*x^4+26*x^3+33*x^2+26*x+66", "y^2=57*x^6+92*x^5+78*x^4+101*x^3+47*x^2+18*x+83", "y^2=85*x^6+106*x^5+73*x^4+9*x^3+77*x^2+110*x+89", "y^2=101*x^6+44*x^5+105*x^3+60*x^2+26*x+74", "y^2=91*x^6+64*x^5+31*x^4+102*x^3+50*x^2+50*x+88", "y^2=41*x^6+78*x^5+34*x^4+72*x^3+68*x^2+13*x+17", "y^2=51*x^6+68*x^5+43*x^4+78*x^3+22*x^2+78*x+44", "y^2=101*x^6+18*x^5+15*x^4+99*x^3+27*x^2+106*x+22", "y^2=42*x^6+64*x^5+37*x^4+30*x^3+89*x^2+72*x+69", "y^2=93*x^6+28*x^5+94*x^4+24*x^3+75*x^2+58*x+77", "y^2=24*x^6+89*x^5+53*x^4+68*x^3+111*x^2+58*x+82", "y^2=84*x^6+72*x^5+15*x^4+24*x^3+12*x^2+84*x+6", "y^2=105*x^6+32*x^5+75*x^4+92*x^3+71*x^2+33*x+8", "y^2=70*x^6+25*x^5+107*x^4+60*x^3+58*x^2+112*x+21", "y^2=27*x^6+40*x^5+89*x^4+105*x^3+76*x^2+8*x+90", "y^2=5*x^6+29*x^5+103*x^4+112*x^3+60*x^2+x+68", "y^2=78*x^6+93*x^5+3*x^4+69*x^3+73*x^2+94*x+103", "y^2=26*x^6+47*x^5+19*x^4+21*x^3+17*x^2+43*x+90", "y^2=43*x^6+80*x^5+45*x^4+94*x^3+72*x^2+72*x+101", "y^2=94*x^6+16*x^5+70*x^4+55*x^3+41*x^2+106*x+112", "y^2=28*x^6+78*x^5+102*x^4+44*x^3+44*x^2+80*x+38", "y^2=73*x^6+87*x^5+47*x^4+44*x^3+103*x^2+70*x+62", "y^2=3*x^6+19*x^5+54*x^4+8*x^3+93*x^2+43*x+35", "y^2=85*x^6+70*x^5+76*x^4+3*x^3+53*x^2+25*x+62", "y^2=38*x^6+57*x^5+99*x^4+20*x^3+61*x^2+65", "y^2=39*x^6+103*x^5+10*x^4+15*x^3+105*x^2+70*x+89", "y^2=90*x^6+95*x^5+105*x^4+92*x^3+71*x^2+53*x+40", "y^2=66*x^6+7*x^5+x^4+58*x^3+44*x^2+90*x+106", "y^2=73*x^6+61*x^5+88*x^4+23*x^3+66*x^2+60*x+13", "y^2=34*x^6+52*x^5+90*x^4+71*x^3+49*x^2+82*x+96", "y^2=70*x^6+4*x^5+38*x^4+32*x^3+32*x^2+90*x+77", "y^2=40*x^6+68*x^5+95*x^4+58*x^3+29*x^2+55*x+84", "y^2=91*x^6+49*x^5+44*x^4+9*x^3+14*x^2+81*x+14", "y^2=109*x^6+24*x^5+36*x^4+92*x^3+22*x^2+51*x+76", "y^2=32*x^6+26*x^5+20*x^4+90*x^3+31*x^2+106*x+59", "y^2=92*x^6+48*x^5+108*x^4+100*x^3+21*x^2+51*x+91", "y^2=23*x^6+57*x^5+17*x^4+99*x^3+97*x^2+8*x+40", "y^2=101*x^6+88*x^5+37*x^4+85*x^3+39*x^2+17*x+72", "y^2=74*x^6+65*x^5+5*x^4+74*x^3+23*x^2+18*x+31", "y^2=63*x^6+83*x^5+111*x^4+79*x^3+107*x^2+13*x+67", "y^2=85*x^6+72*x^5+33*x^4+53*x^3+100*x^2+80*x+18", "y^2=85*x^6+76*x^5+31*x^4+5*x^3+86*x^2+100*x+27", "y^2=x^6+87*x^5+98*x^4+55*x^3+17*x^2+92*x+65", "y^2=37*x^6+52*x^5+63*x^4+73*x^3+58*x^2+56*x+98", "y^2=34*x^6+86*x^5+42*x^4+8*x^3+105*x^2+4*x+55", "y^2=93*x^6+64*x^5+11*x^4+88*x^3+36*x^2+31*x+24", "y^2=81*x^6+62*x^5+70*x^4+86*x^3+16*x^2+109*x+41", "y^2=75*x^6+72*x^5+92*x^4+48*x^3+102*x^2+99*x+24", "y^2=50*x^6+63*x^5+6*x^4+9*x^3+31*x^2+91*x+70", "y^2=5*x^6+53*x^5+75*x^4+102*x^3+31*x^2+51*x+1", "y^2=23*x^6+70*x^5+42*x^4+88*x^3+44*x^2+15*x+91", "y^2=105*x^6+36*x^5+49*x^4+99*x^3+16*x^2+47*x+81", "y^2=23*x^6+77*x^5+6*x^4+18*x^3+79*x^2+39*x+91", "y^2=105*x^6+41*x^5+106*x^4+103*x^3+25*x^2+45*x+12", "y^2=16*x^6+99*x^5+111*x^4+103*x^3+54*x^2+93*x+47", "y^2=70*x^6+44*x^5+4*x^4+14*x^3+5*x^2+21*x+106", "y^2=51*x^6+98*x^5+44*x^4+56*x^3+66*x^2+5*x+73", "y^2=21*x^6+33*x^5+38*x^4+80*x^3+2*x^2+26*x+24"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.1115187084.1"], "geometric_splitting_field": "4.0.1115187084.1", "geometric_splitting_polynomials": [[3883, -605, 104, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 64, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 64, "label": "2.113.az_na", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.1115187084.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -25, 338, -2825, 12769], "poly_str": "1 -25 338 -2825 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -25, 112], "simple_distinct": ["2.113.az_na"], "simple_factors": ["2.113.az_naA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1115187084.1", "splitting_polynomials": [[3883, -605, 104, -1, 1]], "twist_count": 2, "twists": [["2.113.z_na", "2.12769.bz_acem", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 35596, "zfv_singular_count": 0, "zfv_singular_primes": []}