-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10258, 'abvar_counts': [10258, 163697164, 2083757311816, 26583539397646336, 339454940306413840018, 4334527911402380946297856, 55347539385956905009239345682, 706732565785722307282350894833664, 9024267965472711675304764046537990984, 115230877638251784299563598158215318253324], 'abvar_counts_str': '10258 163697164 2083757311816 26583539397646336 339454940306413840018 4334527911402380946297856 55347539385956905009239345682 706732565785722307282350894833664 9024267965472711675304764046537990984 115230877638251784299563598158215318253324 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.142953508955699, 0.411301082306249], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 89, 'curve_counts': [89, 12821, 1444148, 163041825, 18424254169, 2081954063522, 235260607211593, 26584442422056769, 3004041938085609524, 339456738965762503061], 'curve_counts_str': '89 12821 1444148 163041825 18424254169 2081954063522 235260607211593 26584442422056769 3004041938085609524 339456738965762503061 ', 'curves': ['y^2=60*x^6+37*x^5+59*x^4+83*x^3+92*x^2+31*x+19', 'y^2=10*x^6+96*x^5+87*x^4+70*x^3+98*x^2+43*x+5', 'y^2=56*x^6+110*x^5+83*x^4+64*x^3+60*x^2+108*x+89', 'y^2=64*x^6+89*x^5+47*x^4+50*x^3+55*x^2+102*x+92', 'y^2=89*x^6+26*x^5+8*x^4+105*x^3+9*x^2+9*x+68', 'y^2=46*x^6+74*x^5+20*x^4+72*x^3+59*x^2+33*x+80', 'y^2=50*x^6+49*x^5+51*x^4+26*x^3+33*x^2+26*x+66', 'y^2=57*x^6+92*x^5+78*x^4+101*x^3+47*x^2+18*x+83', 'y^2=85*x^6+106*x^5+73*x^4+9*x^3+77*x^2+110*x+89', 'y^2=101*x^6+44*x^5+105*x^3+60*x^2+26*x+74', 'y^2=91*x^6+64*x^5+31*x^4+102*x^3+50*x^2+50*x+88', 'y^2=41*x^6+78*x^5+34*x^4+72*x^3+68*x^2+13*x+17', 'y^2=51*x^6+68*x^5+43*x^4+78*x^3+22*x^2+78*x+44', 'y^2=101*x^6+18*x^5+15*x^4+99*x^3+27*x^2+106*x+22', 'y^2=42*x^6+64*x^5+37*x^4+30*x^3+89*x^2+72*x+69', 'y^2=93*x^6+28*x^5+94*x^4+24*x^3+75*x^2+58*x+77', 'y^2=24*x^6+89*x^5+53*x^4+68*x^3+111*x^2+58*x+82', 'y^2=84*x^6+72*x^5+15*x^4+24*x^3+12*x^2+84*x+6', 'y^2=105*x^6+32*x^5+75*x^4+92*x^3+71*x^2+33*x+8', 'y^2=70*x^6+25*x^5+107*x^4+60*x^3+58*x^2+112*x+21', 'y^2=27*x^6+40*x^5+89*x^4+105*x^3+76*x^2+8*x+90', 'y^2=5*x^6+29*x^5+103*x^4+112*x^3+60*x^2+x+68', 'y^2=78*x^6+93*x^5+3*x^4+69*x^3+73*x^2+94*x+103', 'y^2=26*x^6+47*x^5+19*x^4+21*x^3+17*x^2+43*x+90', 'y^2=43*x^6+80*x^5+45*x^4+94*x^3+72*x^2+72*x+101', 'y^2=94*x^6+16*x^5+70*x^4+55*x^3+41*x^2+106*x+112', 'y^2=28*x^6+78*x^5+102*x^4+44*x^3+44*x^2+80*x+38', 'y^2=73*x^6+87*x^5+47*x^4+44*x^3+103*x^2+70*x+62', 'y^2=3*x^6+19*x^5+54*x^4+8*x^3+93*x^2+43*x+35', 'y^2=85*x^6+70*x^5+76*x^4+3*x^3+53*x^2+25*x+62', 'y^2=38*x^6+57*x^5+99*x^4+20*x^3+61*x^2+65', 'y^2=39*x^6+103*x^5+10*x^4+15*x^3+105*x^2+70*x+89', 'y^2=90*x^6+95*x^5+105*x^4+92*x^3+71*x^2+53*x+40', 'y^2=66*x^6+7*x^5+x^4+58*x^3+44*x^2+90*x+106', 'y^2=73*x^6+61*x^5+88*x^4+23*x^3+66*x^2+60*x+13', 'y^2=34*x^6+52*x^5+90*x^4+71*x^3+49*x^2+82*x+96', 'y^2=70*x^6+4*x^5+38*x^4+32*x^3+32*x^2+90*x+77', 'y^2=40*x^6+68*x^5+95*x^4+58*x^3+29*x^2+55*x+84', 'y^2=91*x^6+49*x^5+44*x^4+9*x^3+14*x^2+81*x+14', 'y^2=109*x^6+24*x^5+36*x^4+92*x^3+22*x^2+51*x+76', 'y^2=32*x^6+26*x^5+20*x^4+90*x^3+31*x^2+106*x+59', 'y^2=92*x^6+48*x^5+108*x^4+100*x^3+21*x^2+51*x+91', 'y^2=23*x^6+57*x^5+17*x^4+99*x^3+97*x^2+8*x+40', 'y^2=101*x^6+88*x^5+37*x^4+85*x^3+39*x^2+17*x+72', 'y^2=74*x^6+65*x^5+5*x^4+74*x^3+23*x^2+18*x+31', 'y^2=63*x^6+83*x^5+111*x^4+79*x^3+107*x^2+13*x+67', 'y^2=85*x^6+72*x^5+33*x^4+53*x^3+100*x^2+80*x+18', 'y^2=85*x^6+76*x^5+31*x^4+5*x^3+86*x^2+100*x+27', 'y^2=x^6+87*x^5+98*x^4+55*x^3+17*x^2+92*x+65', 'y^2=37*x^6+52*x^5+63*x^4+73*x^3+58*x^2+56*x+98', 'y^2=34*x^6+86*x^5+42*x^4+8*x^3+105*x^2+4*x+55', 'y^2=93*x^6+64*x^5+11*x^4+88*x^3+36*x^2+31*x+24', 'y^2=81*x^6+62*x^5+70*x^4+86*x^3+16*x^2+109*x+41', 'y^2=75*x^6+72*x^5+92*x^4+48*x^3+102*x^2+99*x+24', 'y^2=50*x^6+63*x^5+6*x^4+9*x^3+31*x^2+91*x+70', 'y^2=5*x^6+53*x^5+75*x^4+102*x^3+31*x^2+51*x+1', 'y^2=23*x^6+70*x^5+42*x^4+88*x^3+44*x^2+15*x+91', 'y^2=105*x^6+36*x^5+49*x^4+99*x^3+16*x^2+47*x+81', 'y^2=23*x^6+77*x^5+6*x^4+18*x^3+79*x^2+39*x+91', 'y^2=105*x^6+41*x^5+106*x^4+103*x^3+25*x^2+45*x+12', 'y^2=16*x^6+99*x^5+111*x^4+103*x^3+54*x^2+93*x+47', 'y^2=70*x^6+44*x^5+4*x^4+14*x^3+5*x^2+21*x+106', 'y^2=51*x^6+98*x^5+44*x^4+56*x^3+66*x^2+5*x+73', 'y^2=21*x^6+33*x^5+38*x^4+80*x^3+2*x^2+26*x+24'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.1115187084.1'], 'geometric_splitting_field': '4.0.1115187084.1', 'geometric_splitting_polynomials': [[3883, -605, 104, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 64, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 64, 'label': '2.113.az_na', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.1115187084.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -25, 338, -2825, 12769], 'poly_str': '1 -25 338 -2825 12769 ', 'primitive_models': [], 'q': 113, 'real_poly': [1, -25, 112], 'simple_distinct': ['2.113.az_na'], 'simple_factors': ['2.113.az_naA'], 'simple_multiplicities': [1], 'singular_primes': [], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.1115187084.1', 'splitting_polynomials': [[3883, -605, 104, -1, 1]], 'twist_count': 2, 'twists': [['2.113.z_na', '2.12769.bz_acem', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 35596, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.az_na', 'extension_degree': 1, 'extension_label': '2.113.az_na', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.1115187084.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.az_na', 'galois_group': '4T3', 'places': [['54', '1', '0', '0'], ['46', '1', '0', '0'], ['1825/113', '716/113', '57/113', '8/113'], ['9057/113', '716/113', '57/113', '8/113']]}