Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 113 x^{2} )( 1 - 10 x + 113 x^{2} )$ |
$1 - 22 x + 346 x^{2} - 2486 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.309095034261$, $\pm0.344123913111$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $64$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10608$ | $165739392$ | $2088785138544$ | $26589085373620224$ | $339452831193910996848$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12978$ | $1447628$ | $163075838$ | $18424139692$ | $2081946336498$ | $235260512671612$ | $26584442133932926$ | $3004041943974382844$ | $339456739034340842418$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=102 x^6+45 x^5+95 x^4+27 x^3+14 x^2+90 x+105$
- $y^2=58 x^6+72 x^5+14 x^4+11 x^3+14 x^2+72 x+58$
- $y^2=90 x^6+15 x^5+70 x^4+54 x^3+110 x^2+97 x+59$
- $y^2=60 x^6+38 x^5+26 x^4+94 x^3+26 x^2+38 x+60$
- $y^2=111 x^6+16 x^5+11 x^4+41 x^3+52 x^2+97 x+30$
- $y^2=76 x^6+11 x^5+77 x^4+45 x^3+77 x^2+11 x+76$
- $y^2=61 x^6+39 x^5+33 x^4+77 x^3+38 x^2+10 x+44$
- $y^2=29 x^6+26 x^5+2 x^4+26 x^3+2 x^2+26 x+29$
- $y^2=64 x^6+47 x^5+105 x^4+90 x^3+105 x^2+47 x+64$
- $y^2=15 x^6+19 x^5+63 x^4+48 x^3+63 x^2+19 x+15$
- $y^2=3 x^6+44 x^5+43 x^4+67 x^3+43 x^2+44 x+3$
- $y^2=44 x^6+55 x^5+40 x^4+67 x^3+3 x^2+84 x+109$
- $y^2=102 x^5+62 x^4+98 x^3+62 x^2+102 x$
- $y^2=24 x^6+6 x^5+96 x^4+44 x^3+27 x^2+21 x+66$
- $y^2=71 x^6+36 x^5+12 x^4+88 x^3+12 x^2+36 x+71$
- $y^2=80 x^6+25 x^5+3 x^4+70 x^3+3 x^2+25 x+80$
- $y^2=61 x^6+112 x^5+65 x^4+82 x^3+68 x^2+49 x+44$
- $y^2=65 x^6+63 x^5+53 x^4+64 x^3+63 x^2+72 x+35$
- $y^2=101 x^6+78 x^5+53 x^4+67 x^3+53 x^2+78 x+101$
- $y^2=47 x^6+24 x^5+65 x^4+60 x^3+65 x^2+24 x+47$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.am $\times$ 1.113.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ac_ec | $2$ | (not in LMFDB) |
2.113.c_ec | $2$ | (not in LMFDB) |
2.113.w_ni | $2$ | (not in LMFDB) |