Properties

Label 2.113.aw_ni
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 113 x^{2} )( 1 - 10 x + 113 x^{2} )$
  $1 - 22 x + 346 x^{2} - 2486 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.309095034261$, $\pm0.344123913111$
Angle rank:  $2$ (numerical)
Jacobians:  $64$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10608$ $165739392$ $2088785138544$ $26589085373620224$ $339452831193910996848$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $92$ $12978$ $1447628$ $163075838$ $18424139692$ $2081946336498$ $235260512671612$ $26584442133932926$ $3004041943974382844$ $339456739034340842418$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.am $\times$ 1.113.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.ac_ec$2$(not in LMFDB)
2.113.c_ec$2$(not in LMFDB)
2.113.w_ni$2$(not in LMFDB)