# Stored data for abelian variety isogeny class 2.113.aw_ni, downloaded from the LMFDB on 06 October 2025. {"abvar_count": 10608, "abvar_counts": [10608, 165739392, 2088785138544, 26589085373620224, 339452831193910996848, 4334511824119299493996416, 55347517144428520214596753776, 706732558126110669628079810150400, 9024267983162833705162065866330111856, 115230877661531163743711469129261215866752], "abvar_counts_str": "10608 165739392 2088785138544 26589085373620224 339452831193910996848 4334511824119299493996416 55347517144428520214596753776 706732558126110669628079810150400 9024267983162833705162065866330111856 115230877661531163743711469129261215866752 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.309095034261104, 0.344123913111188], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 92, "curve_counts": [92, 12978, 1447628, 163075838, 18424139692, 2081946336498, 235260512671612, 26584442133932926, 3004041943974382844, 339456739034340842418], "curve_counts_str": "92 12978 1447628 163075838 18424139692 2081946336498 235260512671612 26584442133932926 3004041943974382844 339456739034340842418 ", "curves": ["y^2=102*x^6+45*x^5+95*x^4+27*x^3+14*x^2+90*x+105", "y^2=58*x^6+72*x^5+14*x^4+11*x^3+14*x^2+72*x+58", "y^2=90*x^6+15*x^5+70*x^4+54*x^3+110*x^2+97*x+59", "y^2=60*x^6+38*x^5+26*x^4+94*x^3+26*x^2+38*x+60", "y^2=111*x^6+16*x^5+11*x^4+41*x^3+52*x^2+97*x+30", "y^2=76*x^6+11*x^5+77*x^4+45*x^3+77*x^2+11*x+76", "y^2=61*x^6+39*x^5+33*x^4+77*x^3+38*x^2+10*x+44", "y^2=29*x^6+26*x^5+2*x^4+26*x^3+2*x^2+26*x+29", "y^2=64*x^6+47*x^5+105*x^4+90*x^3+105*x^2+47*x+64", "y^2=15*x^6+19*x^5+63*x^4+48*x^3+63*x^2+19*x+15", "y^2=3*x^6+44*x^5+43*x^4+67*x^3+43*x^2+44*x+3", "y^2=44*x^6+55*x^5+40*x^4+67*x^3+3*x^2+84*x+109", "y^2=102*x^5+62*x^4+98*x^3+62*x^2+102*x", "y^2=24*x^6+6*x^5+96*x^4+44*x^3+27*x^2+21*x+66", "y^2=71*x^6+36*x^5+12*x^4+88*x^3+12*x^2+36*x+71", "y^2=80*x^6+25*x^5+3*x^4+70*x^3+3*x^2+25*x+80", "y^2=61*x^6+112*x^5+65*x^4+82*x^3+68*x^2+49*x+44", "y^2=65*x^6+63*x^5+53*x^4+64*x^3+63*x^2+72*x+35", "y^2=101*x^6+78*x^5+53*x^4+67*x^3+53*x^2+78*x+101", "y^2=47*x^6+24*x^5+65*x^4+60*x^3+65*x^2+24*x+47", "y^2=5*x^6+93*x^5+41*x^4+6*x^3+41*x^2+93*x+5", "y^2=38*x^6+13*x^5+5*x^4+98*x^3+5*x^2+13*x+38", "y^2=31*x^6+14*x^5+99*x^4+27*x^3+32*x^2+57*x+9", "y^2=43*x^6+62*x^5+18*x^4+65*x^3+18*x^2+62*x+43", "y^2=107*x^6+91*x^5+87*x^4+76*x^3+87*x^2+91*x+107", "y^2=107*x^6+23*x^5+20*x^4+97*x^3+20*x^2+23*x+107", "y^2=46*x^6+105*x^5+63*x^4+18*x^3+99*x^2+x+108", "y^2=5*x^6+65*x^5+13*x^4+12*x^3+22*x^2+21*x+93", "y^2=3*x^6+16*x^5+20*x^4+17*x^3+20*x^2+16*x+3", "y^2=98*x^6+46*x^5+43*x^4+71*x^3+101*x^2+21*x+102", "y^2=68*x^6+37*x^5+88*x^4+6*x^3+88*x^2+37*x+68", "y^2=41*x^6+106*x^5+19*x^4+5*x^3+43*x^2+64*x+31", "y^2=88*x^6+59*x^5+61*x^4+26*x^3+98*x^2+78*x+1", "y^2=18*x^6+85*x^5+50*x^4+41*x^3+77*x^2+7*x+62", "y^2=23*x^6+38*x^5+97*x^4+83*x^3+50*x^2+78*x+103", "y^2=6*x^6+91*x^5+73*x^4+56*x^3+73*x^2+91*x+6", "y^2=44*x^6+93*x^5+55*x^4+22*x^3+107*x^2+19*x+104", "y^2=58*x^6+29*x^5+16*x^4+74*x^3+16*x^2+29*x+58", "y^2=76*x^6+4*x^5+105*x^4+43*x^3+105*x^2+4*x+76", "y^2=6*x^6+68*x^5+102*x^4+90*x^3+60*x^2+90*x+86", "y^2=15*x^6+10*x^5+43*x^4+45*x^3+43*x^2+10*x+15", "y^2=84*x^6+26*x^5+97*x^4+33*x^3+97*x^2+26*x+84", "y^2=33*x^6+91*x^5+27*x^3+13*x+40", "y^2=33*x^6+67*x^5+103*x^4+8*x^3+5*x^2+45*x+10", "y^2=26*x^6+44*x^5+5*x^4+102*x^3+5*x^2+44*x+26", "y^2=112*x^6+78*x^5+6*x^4+96*x^3+39*x^2+75*x+22", "y^2=100*x^6+67*x^5+x^4+99*x^3+x^2+67*x+100", "y^2=91*x^6+48*x^5+81*x^4+12*x^3+11*x^2+71*x+49", "y^2=58*x^6+37*x^5+96*x^4+102*x^3+96*x^2+37*x+58", "y^2=29*x^6+104*x^5+72*x^4+41*x^3+77*x^2+26*x+67", "y^2=x^6+20*x^5+65*x^4+81*x^3+65*x^2+20*x+1", "y^2=51*x^6+85*x^5+63*x^4+111*x^3+83*x^2+8*x+30", "y^2=77*x^6+69*x^5+8*x^4+83*x^3+22*x^2+91*x+7", "y^2=3*x^6+70*x^5+32*x^4+105*x^3+41*x^2+86*x+70", "y^2=85*x^6+108*x^5+111*x^4+35*x^3+111*x^2+108*x+85", "y^2=42*x^6+38*x^5+67*x^4+17*x^3+67*x^2+38*x+42", "y^2=104*x^6+74*x^5+100*x^4+73*x^3+100*x^2+74*x+104", "y^2=22*x^6+2*x^5+47*x^4+105*x^3+79*x^2+30*x+57", "y^2=4*x^6+66*x^5+2*x^4+99*x^3+15*x^2+40*x+49", "y^2=71*x^6+75*x^5+62*x^4+2*x^3+62*x^2+75*x+71", "y^2=47*x^6+45*x^5+109*x^4+17*x^3+32*x^2+55*x+5", "y^2=3*x^5+25*x^4+52*x^3+25*x^2+3*x", "y^2=60*x^6+51*x^5+20*x^4+26*x^3+94*x^2+61*x+98", "y^2=47*x^6+109*x^5+47*x^4+38*x^3+70*x^2+x+39"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 5, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.308.1", "2.0.88.1"], "geometric_splitting_field": "4.0.1517824.2", "geometric_splitting_polynomials": [[81, 0, 4, 0, 1]], "group_structure_count": 4, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 64, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 64, "label": "2.113.aw_ni", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.308.1", "2.0.88.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -22, 346, -2486, 12769], "poly_str": "1 -22 346 -2486 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -22, 120], "simple_distinct": ["1.113.am", "1.113.ak"], "simple_factors": ["1.113.amA", "1.113.akA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,F+3"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1517824.2", "splitting_polynomials": [[81, 0, 4, 0, 1]], "twist_count": 4, "twists": [["2.113.ac_ec", "2.12769.ia_cbbq", 2], ["2.113.c_ec", "2.12769.ia_cbbq", 2], ["2.113.w_ni", "2.12769.ia_cbbq", 2]], "weak_equivalence_count": 6, "zfv_index": 8, "zfv_index_factorization": [[2, 3]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 108416, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F+3"]}