# Curves in abelian variety isogeny class 2.113.aw_ni, downloaded from the LMFDB on 16 October 2025. y^2=102*x^6+45*x^5+95*x^4+27*x^3+14*x^2+90*x+105 y^2=58*x^6+72*x^5+14*x^4+11*x^3+14*x^2+72*x+58 y^2=90*x^6+15*x^5+70*x^4+54*x^3+110*x^2+97*x+59 y^2=60*x^6+38*x^5+26*x^4+94*x^3+26*x^2+38*x+60 y^2=111*x^6+16*x^5+11*x^4+41*x^3+52*x^2+97*x+30 y^2=76*x^6+11*x^5+77*x^4+45*x^3+77*x^2+11*x+76 y^2=61*x^6+39*x^5+33*x^4+77*x^3+38*x^2+10*x+44 y^2=29*x^6+26*x^5+2*x^4+26*x^3+2*x^2+26*x+29 y^2=64*x^6+47*x^5+105*x^4+90*x^3+105*x^2+47*x+64 y^2=15*x^6+19*x^5+63*x^4+48*x^3+63*x^2+19*x+15 y^2=3*x^6+44*x^5+43*x^4+67*x^3+43*x^2+44*x+3 y^2=44*x^6+55*x^5+40*x^4+67*x^3+3*x^2+84*x+109 y^2=102*x^5+62*x^4+98*x^3+62*x^2+102*x y^2=24*x^6+6*x^5+96*x^4+44*x^3+27*x^2+21*x+66 y^2=71*x^6+36*x^5+12*x^4+88*x^3+12*x^2+36*x+71 y^2=80*x^6+25*x^5+3*x^4+70*x^3+3*x^2+25*x+80 y^2=61*x^6+112*x^5+65*x^4+82*x^3+68*x^2+49*x+44 y^2=65*x^6+63*x^5+53*x^4+64*x^3+63*x^2+72*x+35 y^2=101*x^6+78*x^5+53*x^4+67*x^3+53*x^2+78*x+101 y^2=47*x^6+24*x^5+65*x^4+60*x^3+65*x^2+24*x+47 y^2=5*x^6+93*x^5+41*x^4+6*x^3+41*x^2+93*x+5 y^2=38*x^6+13*x^5+5*x^4+98*x^3+5*x^2+13*x+38 y^2=31*x^6+14*x^5+99*x^4+27*x^3+32*x^2+57*x+9 y^2=43*x^6+62*x^5+18*x^4+65*x^3+18*x^2+62*x+43 y^2=107*x^6+91*x^5+87*x^4+76*x^3+87*x^2+91*x+107 y^2=107*x^6+23*x^5+20*x^4+97*x^3+20*x^2+23*x+107 y^2=46*x^6+105*x^5+63*x^4+18*x^3+99*x^2+x+108 y^2=5*x^6+65*x^5+13*x^4+12*x^3+22*x^2+21*x+93 y^2=3*x^6+16*x^5+20*x^4+17*x^3+20*x^2+16*x+3 y^2=98*x^6+46*x^5+43*x^4+71*x^3+101*x^2+21*x+102 y^2=68*x^6+37*x^5+88*x^4+6*x^3+88*x^2+37*x+68 y^2=41*x^6+106*x^5+19*x^4+5*x^3+43*x^2+64*x+31 y^2=88*x^6+59*x^5+61*x^4+26*x^3+98*x^2+78*x+1 y^2=18*x^6+85*x^5+50*x^4+41*x^3+77*x^2+7*x+62 y^2=23*x^6+38*x^5+97*x^4+83*x^3+50*x^2+78*x+103 y^2=6*x^6+91*x^5+73*x^4+56*x^3+73*x^2+91*x+6 y^2=44*x^6+93*x^5+55*x^4+22*x^3+107*x^2+19*x+104 y^2=58*x^6+29*x^5+16*x^4+74*x^3+16*x^2+29*x+58 y^2=76*x^6+4*x^5+105*x^4+43*x^3+105*x^2+4*x+76 y^2=6*x^6+68*x^5+102*x^4+90*x^3+60*x^2+90*x+86 y^2=15*x^6+10*x^5+43*x^4+45*x^3+43*x^2+10*x+15 y^2=84*x^6+26*x^5+97*x^4+33*x^3+97*x^2+26*x+84 y^2=33*x^6+91*x^5+27*x^3+13*x+40 y^2=33*x^6+67*x^5+103*x^4+8*x^3+5*x^2+45*x+10 y^2=26*x^6+44*x^5+5*x^4+102*x^3+5*x^2+44*x+26 y^2=112*x^6+78*x^5+6*x^4+96*x^3+39*x^2+75*x+22 y^2=100*x^6+67*x^5+x^4+99*x^3+x^2+67*x+100 y^2=91*x^6+48*x^5+81*x^4+12*x^3+11*x^2+71*x+49 y^2=58*x^6+37*x^5+96*x^4+102*x^3+96*x^2+37*x+58 y^2=29*x^6+104*x^5+72*x^4+41*x^3+77*x^2+26*x+67 y^2=x^6+20*x^5+65*x^4+81*x^3+65*x^2+20*x+1 y^2=51*x^6+85*x^5+63*x^4+111*x^3+83*x^2+8*x+30 y^2=77*x^6+69*x^5+8*x^4+83*x^3+22*x^2+91*x+7 y^2=3*x^6+70*x^5+32*x^4+105*x^3+41*x^2+86*x+70 y^2=85*x^6+108*x^5+111*x^4+35*x^3+111*x^2+108*x+85 y^2=42*x^6+38*x^5+67*x^4+17*x^3+67*x^2+38*x+42 y^2=104*x^6+74*x^5+100*x^4+73*x^3+100*x^2+74*x+104 y^2=22*x^6+2*x^5+47*x^4+105*x^3+79*x^2+30*x+57 y^2=4*x^6+66*x^5+2*x^4+99*x^3+15*x^2+40*x+49 y^2=71*x^6+75*x^5+62*x^4+2*x^3+62*x^2+75*x+71 y^2=47*x^6+45*x^5+109*x^4+17*x^3+32*x^2+55*x+5 y^2=3*x^5+25*x^4+52*x^3+25*x^2+3*x y^2=60*x^6+51*x^5+20*x^4+26*x^3+94*x^2+61*x+98 y^2=47*x^6+109*x^5+47*x^4+38*x^3+70*x^2+x+39