Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 404 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.238608637507$, $\pm0.319172747552$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3757.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
Isomorphism classes: | 72 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10096$ | $164080192$ | $2087568213952$ | $26591251366566144$ | $339459365089242708976$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12849$ | $1446786$ | $163089121$ | $18424494327$ | $2081949583902$ | $235260509667207$ | $26584441670674369$ | $3004041938075562402$ | $339456739009678938609$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=70 x^6+68 x^5+77 x^4+53 x^3+38 x^2+37 x+23$
- $y^2=15 x^6+88 x^4+39 x^3+95 x^2+47 x+96$
- $y^2=83 x^6+82 x^5+40 x^4+90 x^3+88 x^2+7 x+81$
- $y^2=52 x^6+14 x^5+41 x^4+37 x^3+101 x^2+30 x+76$
- $y^2=105 x^6+14 x^5+65 x^4+81 x^3+38 x^2+36 x+108$
- $y^2=51 x^6+84 x^5+19 x^4+71 x^3+45 x^2+77 x+94$
- $y^2=18 x^6+53 x^5+102 x^4+72 x^3+95 x^2+6 x+63$
- $y^2=83 x^6+18 x^5+68 x^4+24 x^3+70 x^2+62 x+18$
- $y^2=74 x^6+74 x^5+42 x^4+34 x^3+x^2+56 x+31$
- $y^2=29 x^6+111 x^5+63 x^4+88 x^3+10 x^2+22 x+7$
- $y^2=59 x^6+10 x^5+82 x^4+52 x^3+44 x^2+78 x+36$
- $y^2=38 x^6+60 x^5+82 x^4+76 x^3+20 x^2+3 x+93$
- $y^2=38 x^6+16 x^5+29 x^4+20 x^3+35 x^2+81 x+93$
- $y^2=86 x^6+20 x^5+90 x^4+51 x^3+102 x^2+90 x+67$
- $y^2=16 x^6+x^5+54 x^4+16 x^3+19 x^2+95 x+99$
- $y^2=61 x^6+79 x^5+78 x^4+97 x^3+76 x^2+33 x+104$
- $y^2=22 x^6+101 x^5+93 x^4+72 x^3+67 x^2+36 x+81$
- $y^2=89 x^6+65 x^5+102 x^4+98 x^3+19 x^2+74 x+108$
- $y^2=71 x^6+105 x^5+22 x^4+76 x^3+31 x^2+2 x+39$
- $y^2=48 x^6+48 x^5+45 x^4+101 x^3+21 x^2+105 x+31$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.3757.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_po | $2$ | (not in LMFDB) |