-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10096, 'abvar_counts': [10096, 164080192, 2087568213952, 26591251366566144, 339459365089242708976, 4334518585048717524779008, 55347516437610677567802723952, 706732545810640452379000965522432, 9024267965442529693982468326648341952, 115230877653159514298737411155763248734272], 'abvar_counts_str': '10096 164080192 2087568213952 26591251366566144 339459365089242708976 4334518585048717524779008 55347516437610677567802723952 706732545810640452379000965522432 9024267965442529693982468326648341952 115230877653159514298737411155763248734272 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.238608637506747, 0.319172747551528], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 87, 'curve_counts': [87, 12849, 1446786, 163089121, 18424494327, 2081949583902, 235260509667207, 26584441670674369, 3004041938075562402, 339456739009678938609], 'curve_counts_str': '87 12849 1446786 163089121 18424494327 2081949583902 235260509667207 26584441670674369 3004041938075562402 339456739009678938609 ', 'curves': ['y^2=70*x^6+68*x^5+77*x^4+53*x^3+38*x^2+37*x+23', 'y^2=15*x^6+88*x^4+39*x^3+95*x^2+47*x+96', 'y^2=83*x^6+82*x^5+40*x^4+90*x^3+88*x^2+7*x+81', 'y^2=52*x^6+14*x^5+41*x^4+37*x^3+101*x^2+30*x+76', 'y^2=105*x^6+14*x^5+65*x^4+81*x^3+38*x^2+36*x+108', 'y^2=51*x^6+84*x^5+19*x^4+71*x^3+45*x^2+77*x+94', 'y^2=18*x^6+53*x^5+102*x^4+72*x^3+95*x^2+6*x+63', 'y^2=83*x^6+18*x^5+68*x^4+24*x^3+70*x^2+62*x+18', 'y^2=74*x^6+74*x^5+42*x^4+34*x^3+x^2+56*x+31', 'y^2=29*x^6+111*x^5+63*x^4+88*x^3+10*x^2+22*x+7', 'y^2=59*x^6+10*x^5+82*x^4+52*x^3+44*x^2+78*x+36', 'y^2=38*x^6+60*x^5+82*x^4+76*x^3+20*x^2+3*x+93', 'y^2=38*x^6+16*x^5+29*x^4+20*x^3+35*x^2+81*x+93', 'y^2=86*x^6+20*x^5+90*x^4+51*x^3+102*x^2+90*x+67', 'y^2=16*x^6+x^5+54*x^4+16*x^3+19*x^2+95*x+99', 'y^2=61*x^6+79*x^5+78*x^4+97*x^3+76*x^2+33*x+104', 'y^2=22*x^6+101*x^5+93*x^4+72*x^3+67*x^2+36*x+81', 'y^2=89*x^6+65*x^5+102*x^4+98*x^3+19*x^2+74*x+108', 'y^2=71*x^6+105*x^5+22*x^4+76*x^3+31*x^2+2*x+39', 'y^2=48*x^6+48*x^5+45*x^4+101*x^3+21*x^2+105*x+31', 'y^2=61*x^6+109*x^5+41*x^4+31*x^3+85*x^2+65*x+65', 'y^2=90*x^6+12*x^5+37*x^4+65*x^3+23*x^2+99*x+42', 'y^2=13*x^6+38*x^5+82*x^4+5*x^3+51*x+5', 'y^2=55*x^6+6*x^5+17*x^4+37*x^3+43*x^2+53*x+84', 'y^2=28*x^6+48*x^5+92*x^4+16*x^3+80*x^2+7*x+68', 'y^2=43*x^6+98*x^5+19*x^4+83*x^3+4*x^2+61*x+58', 'y^2=64*x^6+17*x^5+18*x^4+63*x^3+53*x^2+56*x+11', 'y^2=92*x^6+11*x^5+51*x^4+79*x^3+55*x^2+106*x+45', 'y^2=12*x^6+110*x^5+108*x^4+85*x^3+98*x^2+56*x+90', 'y^2=45*x^6+91*x^5+26*x^4+89*x^3+54*x^2+x+70', 'y^2=15*x^6+99*x^5+3*x^4+13*x^3+88*x^2+34*x+101', 'y^2=42*x^6+32*x^5+57*x^4+85*x^3+31*x^2+59*x+58', 'y^2=57*x^6+6*x^5+55*x^4+85*x^3+73*x^2+100*x+100', 'y^2=3*x^6+48*x^5+79*x^4+108*x^3+25*x^2+58*x+73', 'y^2=15*x^6+68*x^5+48*x^4+3*x^3+66*x^2+110*x+110', 'y^2=12*x^6+13*x^5+40*x^4+95*x^3+26*x^2+25*x+80', 'y^2=84*x^6+51*x^5+97*x^4+61*x^3+19*x^2+13*x+11', 'y^2=91*x^6+56*x^5+42*x^4+51*x^3+18*x^2+95*x+58', 'y^2=109*x^6+94*x^5+92*x^4+6*x^3+63*x^2+72*x+108', 'y^2=27*x^6+90*x^5+48*x^4+31*x^3+39*x^2+33*x+45', 'y^2=69*x^6+86*x^5+47*x^4+53*x^3+20*x^2+84*x+60', 'y^2=77*x^5+51*x^4+82*x^3+9*x^2+64*x+106', 'y^2=58*x^6+10*x^5+31*x^4+40*x^3+40*x^2+66*x+69', 'y^2=38*x^6+32*x^5+98*x^4+39*x^3+76*x^2+24*x+90', 'y^2=112*x^6+70*x^5+21*x^4+51*x^3+87*x^2+22*x+78', 'y^2=19*x^6+4*x^5+86*x^4+82*x^3+107*x^2+19*x+12', 'y^2=17*x^6+44*x^5+62*x^4+35*x^3+13*x^2+92*x+50', 'y^2=37*x^6+101*x^5+56*x^4+98*x^3+83*x^2+70*x+45', 'y^2=14*x^6+36*x^5+8*x^4+64*x^3+33*x^2+106*x+86', 'y^2=23*x^6+47*x^5+112*x^4+32*x^3+27*x^2+3*x+92', 'y^2=78*x^6+63*x^5+106*x^4+38*x^3+81*x^2+52*x+65', 'y^2=12*x^6+73*x^5+35*x^4+98*x^3+19*x^2+2*x+17', 'y^2=40*x^6+34*x^5+26*x^4+37*x^3+25*x+105', 'y^2=6*x^6+53*x^5+96*x^4+20*x^3+111*x^2+97*x+103', 'y^2=48*x^6+98*x^5+31*x^4+56*x^3+38*x^2+4*x+98', 'y^2=31*x^6+9*x^5+97*x^4+45*x^3+30*x^2+54*x+109', 'y^2=6*x^6+85*x^5+100*x^4+41*x^3+28*x^2+57*x+100', 'y^2=91*x^6+4*x^5+65*x^4+34*x^3+64*x^2+88*x+79', 'y^2=70*x^6+62*x^5+22*x^4+63*x^3+3*x^2+78*x+12', 'y^2=94*x^6+73*x^5+72*x^4+66*x^3+84*x^2+108*x+68', 'y^2=57*x^6+92*x^5+20*x^4+11*x^3+34*x^2+39*x+76', 'y^2=33*x^6+11*x^5+2*x^4+91*x^3+x^2+51*x+42', 'y^2=91*x^6+48*x^5+7*x^4+57*x^3+81*x^2+58*x+62', 'y^2=10*x^6+105*x^5+84*x^4+43*x^3+22*x^2+50*x+49', 'y^2=23*x^6+77*x^5+28*x^4+53*x^3+17*x^2+82*x+14', 'y^2=57*x^6+43*x^5+105*x^4+84*x^3+69*x^2+91*x+45', 'y^2=51*x^6+67*x^4+20*x^3+53*x^2+64*x+26', 'y^2=57*x^6+101*x^5+19*x^4+112*x^2+42*x+62', 'y^2=86*x^6+56*x^5+51*x^4+101*x^3+75*x^2+33*x+47', 'y^2=30*x^6+85*x^5+110*x^4+110*x^3+55*x^2+84*x+102', 'y^2=72*x^6+17*x^5+36*x^4+13*x^3+54*x^2+85*x+24', 'y^2=39*x^6+31*x^5+60*x^4+6*x^3+81*x^2+24*x+4'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.3757.1'], 'geometric_splitting_field': '4.0.2873.1', 'geometric_splitting_polynomials': [[4, -2, 1, -1, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.113.abb_po', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.3757.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 13, 1, 2], [1, 17, 1, 8], [1, 47, 1, 8]], 'poly': [1, -27, 404, -3051, 12769], 'poly_str': '1 -27 404 -3051 12769 ', 'primitive_models': [], 'principal_polarization_count': 72, 'q': 113, 'real_poly': [1, -27, 178], 'simple_distinct': ['2.113.abb_po'], 'simple_factors': ['2.113.abb_poA'], 'simple_multiplicities': [1], 'singular_primes': ['2,F^2-F', '3,4*F^2+3*F-5'], 'size': 72, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.2873.1', 'splitting_polynomials': [[4, -2, 1, -1, 1]], 'twist_count': 2, 'twists': [['2.113.bb_po', '2.12769.db_bjnc', 2]], 'weak_equivalence_count': 8, 'zfv_index': 72, 'zfv_index_factorization': [[2, 3], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 32, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 67392, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,F^2-F', '3,4*F^2+3*F-5']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.abb_po', 'extension_degree': 1, 'extension_label': '2.113.abb_po', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.3757.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.abb_po', 'galois_group': '4T3', 'places': [['97', '77', '112', '1'], ['30', '27', '112', '1']]}