# Curves in abelian variety isogeny class 2.113.abb_po, downloaded from the LMFDB on 06 October 2025. y^2=70*x^6+68*x^5+77*x^4+53*x^3+38*x^2+37*x+23 y^2=15*x^6+88*x^4+39*x^3+95*x^2+47*x+96 y^2=83*x^6+82*x^5+40*x^4+90*x^3+88*x^2+7*x+81 y^2=52*x^6+14*x^5+41*x^4+37*x^3+101*x^2+30*x+76 y^2=105*x^6+14*x^5+65*x^4+81*x^3+38*x^2+36*x+108 y^2=51*x^6+84*x^5+19*x^4+71*x^3+45*x^2+77*x+94 y^2=18*x^6+53*x^5+102*x^4+72*x^3+95*x^2+6*x+63 y^2=83*x^6+18*x^5+68*x^4+24*x^3+70*x^2+62*x+18 y^2=74*x^6+74*x^5+42*x^4+34*x^3+x^2+56*x+31 y^2=29*x^6+111*x^5+63*x^4+88*x^3+10*x^2+22*x+7 y^2=59*x^6+10*x^5+82*x^4+52*x^3+44*x^2+78*x+36 y^2=38*x^6+60*x^5+82*x^4+76*x^3+20*x^2+3*x+93 y^2=38*x^6+16*x^5+29*x^4+20*x^3+35*x^2+81*x+93 y^2=86*x^6+20*x^5+90*x^4+51*x^3+102*x^2+90*x+67 y^2=16*x^6+x^5+54*x^4+16*x^3+19*x^2+95*x+99 y^2=61*x^6+79*x^5+78*x^4+97*x^3+76*x^2+33*x+104 y^2=22*x^6+101*x^5+93*x^4+72*x^3+67*x^2+36*x+81 y^2=89*x^6+65*x^5+102*x^4+98*x^3+19*x^2+74*x+108 y^2=71*x^6+105*x^5+22*x^4+76*x^3+31*x^2+2*x+39 y^2=48*x^6+48*x^5+45*x^4+101*x^3+21*x^2+105*x+31 y^2=61*x^6+109*x^5+41*x^4+31*x^3+85*x^2+65*x+65 y^2=90*x^6+12*x^5+37*x^4+65*x^3+23*x^2+99*x+42 y^2=13*x^6+38*x^5+82*x^4+5*x^3+51*x+5 y^2=55*x^6+6*x^5+17*x^4+37*x^3+43*x^2+53*x+84 y^2=28*x^6+48*x^5+92*x^4+16*x^3+80*x^2+7*x+68 y^2=43*x^6+98*x^5+19*x^4+83*x^3+4*x^2+61*x+58 y^2=64*x^6+17*x^5+18*x^4+63*x^3+53*x^2+56*x+11 y^2=92*x^6+11*x^5+51*x^4+79*x^3+55*x^2+106*x+45 y^2=12*x^6+110*x^5+108*x^4+85*x^3+98*x^2+56*x+90 y^2=45*x^6+91*x^5+26*x^4+89*x^3+54*x^2+x+70 y^2=15*x^6+99*x^5+3*x^4+13*x^3+88*x^2+34*x+101 y^2=42*x^6+32*x^5+57*x^4+85*x^3+31*x^2+59*x+58 y^2=57*x^6+6*x^5+55*x^4+85*x^3+73*x^2+100*x+100 y^2=3*x^6+48*x^5+79*x^4+108*x^3+25*x^2+58*x+73 y^2=15*x^6+68*x^5+48*x^4+3*x^3+66*x^2+110*x+110 y^2=12*x^6+13*x^5+40*x^4+95*x^3+26*x^2+25*x+80 y^2=84*x^6+51*x^5+97*x^4+61*x^3+19*x^2+13*x+11 y^2=91*x^6+56*x^5+42*x^4+51*x^3+18*x^2+95*x+58 y^2=109*x^6+94*x^5+92*x^4+6*x^3+63*x^2+72*x+108 y^2=27*x^6+90*x^5+48*x^4+31*x^3+39*x^2+33*x+45 y^2=69*x^6+86*x^5+47*x^4+53*x^3+20*x^2+84*x+60 y^2=77*x^5+51*x^4+82*x^3+9*x^2+64*x+106 y^2=58*x^6+10*x^5+31*x^4+40*x^3+40*x^2+66*x+69 y^2=38*x^6+32*x^5+98*x^4+39*x^3+76*x^2+24*x+90 y^2=112*x^6+70*x^5+21*x^4+51*x^3+87*x^2+22*x+78 y^2=19*x^6+4*x^5+86*x^4+82*x^3+107*x^2+19*x+12 y^2=17*x^6+44*x^5+62*x^4+35*x^3+13*x^2+92*x+50 y^2=37*x^6+101*x^5+56*x^4+98*x^3+83*x^2+70*x+45 y^2=14*x^6+36*x^5+8*x^4+64*x^3+33*x^2+106*x+86 y^2=23*x^6+47*x^5+112*x^4+32*x^3+27*x^2+3*x+92 y^2=78*x^6+63*x^5+106*x^4+38*x^3+81*x^2+52*x+65 y^2=12*x^6+73*x^5+35*x^4+98*x^3+19*x^2+2*x+17 y^2=40*x^6+34*x^5+26*x^4+37*x^3+25*x+105 y^2=6*x^6+53*x^5+96*x^4+20*x^3+111*x^2+97*x+103 y^2=48*x^6+98*x^5+31*x^4+56*x^3+38*x^2+4*x+98 y^2=31*x^6+9*x^5+97*x^4+45*x^3+30*x^2+54*x+109 y^2=6*x^6+85*x^5+100*x^4+41*x^3+28*x^2+57*x+100 y^2=91*x^6+4*x^5+65*x^4+34*x^3+64*x^2+88*x+79 y^2=70*x^6+62*x^5+22*x^4+63*x^3+3*x^2+78*x+12 y^2=94*x^6+73*x^5+72*x^4+66*x^3+84*x^2+108*x+68 y^2=57*x^6+92*x^5+20*x^4+11*x^3+34*x^2+39*x+76 y^2=33*x^6+11*x^5+2*x^4+91*x^3+x^2+51*x+42 y^2=91*x^6+48*x^5+7*x^4+57*x^3+81*x^2+58*x+62 y^2=10*x^6+105*x^5+84*x^4+43*x^3+22*x^2+50*x+49 y^2=23*x^6+77*x^5+28*x^4+53*x^3+17*x^2+82*x+14 y^2=57*x^6+43*x^5+105*x^4+84*x^3+69*x^2+91*x+45 y^2=51*x^6+67*x^4+20*x^3+53*x^2+64*x+26 y^2=57*x^6+101*x^5+19*x^4+112*x^2+42*x+62 y^2=86*x^6+56*x^5+51*x^4+101*x^3+75*x^2+33*x+47 y^2=30*x^6+85*x^5+110*x^4+110*x^3+55*x^2+84*x+102 y^2=72*x^6+17*x^5+36*x^4+13*x^3+54*x^2+85*x+24 y^2=39*x^6+31*x^5+60*x^4+6*x^3+81*x^2+24*x+4