Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 384 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.166292695970$, $\pm0.367841913472$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.827992.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10076$ | $163553632$ | $2085227111792$ | $26586881309701504$ | $339456678781051375676$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12809$ | $1445166$ | $163062321$ | $18424348527$ | $2081952341822$ | $235260581887887$ | $26584442415590689$ | $3004041939964143822$ | $339456738954584385209$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=55 x^6+12 x^5+16 x^4+97 x^3+110 x^2+3 x+61$
- $y^2=57 x^6+105 x^5+61 x^4+19 x^3+72 x^2+97 x+83$
- $y^2=31 x^6+31 x^5+108 x^4+26 x^3+49 x^2+x+96$
- $y^2=62 x^6+15 x^5+112 x^4+84 x^3+95 x^2+46 x+50$
- $y^2=25 x^6+24 x^5+79 x^4+25 x^3+111 x^2+31 x+16$
- $y^2=73 x^6+102 x^5+19 x^4+83 x^3+28 x^2+35 x+35$
- $y^2=103 x^6+94 x^5+3 x^4+62 x^3+102 x^2+29 x+107$
- $y^2=17 x^6+38 x^5+24 x^4+17 x^3+46 x^2+112 x+101$
- $y^2=60 x^6+5 x^5+63 x^4+107 x^3+47 x^2+82 x+73$
- $y^2=82 x^6+94 x^5+76 x^4+112 x^3+48 x^2+x+80$
- $y^2=105 x^6+29 x^5+104 x^4+36 x^3+100 x^2+10 x+91$
- $y^2=3 x^6+107 x^5+98 x^4+3 x^3+10 x^2+37 x+102$
- $y^2=38 x^6+18 x^5+58 x^4+39 x^3+78 x^2+31 x+63$
- $y^2=45 x^6+37 x^5+10 x^4+33 x^3+102 x^2+75 x+34$
- $y^2=47 x^6+58 x^5+57 x^4+95 x^3+31 x^2+48 x+47$
- $y^2=14 x^6+22 x^5+13 x^4+11 x^3+2 x^2+53 x+74$
- $y^2=12 x^6+60 x^5+12 x^4+92 x^3+27 x^2+56 x+34$
- $y^2=101 x^6+28 x^5+7 x^4+16 x^3+18 x^2+20 x+72$
- $y^2=63 x^6+2 x^5+73 x^4+61 x^3+15 x^2+93 x+17$
- $y^2=84 x^6+72 x^5+63 x^4+49 x^3+40 x^2+76 x+48$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.827992.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_ou | $2$ | (not in LMFDB) |