-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10076, 'abvar_counts': [10076, 163553632, 2085227111792, 26586881309701504, 339456678781051375676, 4334524326900179609663488, 55347533428287269821496381372, 706732565613825173618719846282752, 9024267971115907492930806859694080112, 115230877634457296866086035262020213426272], 'abvar_counts_str': '10076 163553632 2085227111792 26586881309701504 339456678781051375676 4334524326900179609663488 55347533428287269821496381372 706732565613825173618719846282752 9024267971115907492930806859694080112 115230877634457296866086035262020213426272 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.16629269597027, 0.367841913472137], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 87, 'curve_counts': [87, 12809, 1445166, 163062321, 18424348527, 2081952341822, 235260581887887, 26584442415590689, 3004041939964143822, 339456738954584385209], 'curve_counts_str': '87 12809 1445166 163062321 18424348527 2081952341822 235260581887887 26584442415590689 3004041939964143822 339456738954584385209 ', 'curves': ['y^2=55*x^6+12*x^5+16*x^4+97*x^3+110*x^2+3*x+61', 'y^2=57*x^6+105*x^5+61*x^4+19*x^3+72*x^2+97*x+83', 'y^2=31*x^6+31*x^5+108*x^4+26*x^3+49*x^2+x+96', 'y^2=62*x^6+15*x^5+112*x^4+84*x^3+95*x^2+46*x+50', 'y^2=25*x^6+24*x^5+79*x^4+25*x^3+111*x^2+31*x+16', 'y^2=73*x^6+102*x^5+19*x^4+83*x^3+28*x^2+35*x+35', 'y^2=103*x^6+94*x^5+3*x^4+62*x^3+102*x^2+29*x+107', 'y^2=17*x^6+38*x^5+24*x^4+17*x^3+46*x^2+112*x+101', 'y^2=60*x^6+5*x^5+63*x^4+107*x^3+47*x^2+82*x+73', 'y^2=82*x^6+94*x^5+76*x^4+112*x^3+48*x^2+x+80', 'y^2=105*x^6+29*x^5+104*x^4+36*x^3+100*x^2+10*x+91', 'y^2=3*x^6+107*x^5+98*x^4+3*x^3+10*x^2+37*x+102', 'y^2=38*x^6+18*x^5+58*x^4+39*x^3+78*x^2+31*x+63', 'y^2=45*x^6+37*x^5+10*x^4+33*x^3+102*x^2+75*x+34', 'y^2=47*x^6+58*x^5+57*x^4+95*x^3+31*x^2+48*x+47', 'y^2=14*x^6+22*x^5+13*x^4+11*x^3+2*x^2+53*x+74', 'y^2=12*x^6+60*x^5+12*x^4+92*x^3+27*x^2+56*x+34', 'y^2=101*x^6+28*x^5+7*x^4+16*x^3+18*x^2+20*x+72', 'y^2=63*x^6+2*x^5+73*x^4+61*x^3+15*x^2+93*x+17', 'y^2=84*x^6+72*x^5+63*x^4+49*x^3+40*x^2+76*x+48', 'y^2=93*x^6+14*x^5+25*x^4+43*x^3+43*x^2+20*x+110', 'y^2=29*x^6+18*x^5+55*x^4+52*x^3+99*x^2+55*x+43', 'y^2=110*x^6+60*x^5+56*x^4+104*x^3+14*x^2+109*x+9', 'y^2=2*x^6+48*x^5+26*x^4+70*x^3+48*x^2+56*x+103', 'y^2=106*x^6+4*x^5+22*x^4+70*x^3+57*x^2+6*x+86', 'y^2=101*x^6+103*x^5+108*x^4+112*x^3+48*x^2+92*x+30', 'y^2=53*x^6+70*x^5+71*x^4+78*x^3+20*x^2+21*x+38', 'y^2=2*x^6+26*x^5+21*x^4+52*x^3+96*x^2+104*x+80', 'y^2=101*x^6+4*x^5+104*x^4+57*x^3+59*x^2+66*x+15', 'y^2=86*x^6+39*x^5+32*x^4+53*x^3+99*x^2+5*x+21', 'y^2=82*x^6+45*x^5+104*x^4+71*x^3+90*x^2+14*x+43', 'y^2=74*x^6+54*x^5+27*x^4+26*x^3+31*x^2+72*x+55', 'y^2=38*x^6+83*x^5+16*x^4+83*x^3+70*x^2+10*x+4', 'y^2=90*x^6+40*x^5+7*x^4+75*x^3+53*x^2+82*x+81', 'y^2=31*x^6+72*x^5+55*x^4+88*x^3+x^2+34*x+92', 'y^2=16*x^6+90*x^5+111*x^4+63*x^3+x^2+84*x+2', 'y^2=98*x^6+41*x^5+39*x^4+46*x^3+21*x^2+29*x+111', 'y^2=61*x^6+93*x^5+2*x^4+9*x^3+112*x^2+48*x+6', 'y^2=40*x^6+67*x^5+102*x^4+84*x^3+68*x^2+60*x+21', 'y^2=57*x^6+74*x^5+56*x^4+69*x^3+88*x^2+112*x+17', 'y^2=63*x^6+111*x^5+61*x^4+99*x^3+82*x^2+67*x+37', 'y^2=86*x^6+98*x^5+21*x^4+41*x^3+13*x^2+105*x+110', 'y^2=41*x^6+26*x^5+5*x^4+100*x^3+98*x^2+68*x+76', 'y^2=24*x^6+78*x^5+88*x^4+92*x^3+32*x^2+23*x+13', 'y^2=87*x^6+4*x^5+96*x^4+66*x^3+79*x^2+85*x+79', 'y^2=43*x^6+86*x^5+22*x^4+82*x^3+57*x^2+44*x+16', 'y^2=26*x^6+5*x^5+9*x^4+16*x^3+30*x^2+39*x+60', 'y^2=31*x^6+88*x^5+77*x^4+89*x^3+6*x^2+74*x+17', 'y^2=34*x^6+14*x^5+84*x^4+26*x^3+70*x^2+69*x+8', 'y^2=37*x^6+67*x^5+67*x^4+34*x^3+35*x^2+17*x+60', 'y^2=33*x^6+17*x^5+97*x^4+x^3+105*x^2+57*x+76', 'y^2=58*x^6+79*x^5+81*x^4+70*x^3+74*x^2+72*x+18', 'y^2=89*x^6+54*x^5+58*x^4+21*x^3+34*x^2+86*x+105', 'y^2=40*x^6+51*x^5+20*x^4+17*x^3+77*x^2+52*x+101', 'y^2=10*x^6+3*x^5+102*x^4+67*x^3+25*x^2+19*x+20', 'y^2=96*x^6+86*x^5+110*x^4+96*x^3+35*x^2+57*x+76', 'y^2=65*x^6+23*x^5+41*x^4+70*x^3+77*x^2+85*x+32', 'y^2=93*x^6+67*x^5+8*x^4+32*x^3+107*x^2+108*x+58', 'y^2=19*x^6+79*x^5+81*x^4+2*x^3+110*x^2+58*x+66', 'y^2=21*x^6+109*x^5+14*x^4+38*x^3+16*x^2+40*x+33', 'y^2=80*x^6+86*x^5+101*x^4+2*x^3+40*x^2+9*x+90', 'y^2=5*x^6+103*x^5+11*x^4+69*x^3+59*x^2+22*x+16', 'y^2=23*x^6+17*x^5+18*x^4+59*x^3+19*x^2+4*x+103', 'y^2=57*x^6+9*x^5+52*x^4+78*x^3+23*x^2+17*x+44', 'y^2=50*x^6+27*x^5+92*x^4+72*x^3+28*x^2+5*x+2', 'y^2=20*x^6+76*x^5+16*x^4+41*x^3+30*x^2+106*x+98', 'y^2=108*x^6+109*x^5+55*x^4+95*x^3+2*x^2+58*x+50', 'y^2=39*x^6+10*x^5+x^4+78*x^3+11*x^2+44*x+108', 'y^2=90*x^6+23*x^5+21*x^4+23*x^3+17*x^2+107*x+1', 'y^2=89*x^6+86*x^5+61*x^4+30*x^3+97*x^2+77*x+38', 'y^2=23*x^6+112*x^5+32*x^4+33*x^2+29', 'y^2=34*x^6+112*x^5+99*x^4+53*x^3+97*x^2+100*x+84'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.827992.1'], 'geometric_splitting_field': '4.0.751168.1', 'geometric_splitting_polynomials': [[59, -18, 19, -2, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.113.abb_ou', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.827992.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -27, 384, -3051, 12769], 'poly_str': '1 -27 384 -3051 12769 ', 'primitive_models': [], 'q': 113, 'real_poly': [1, -27, 158], 'simple_distinct': ['2.113.abb_ou'], 'simple_factors': ['2.113.abb_ouA'], 'simple_multiplicities': [1], 'singular_primes': ['2,F^2-9*F-2*V+50', '11,13*F^2-28*F-9*V+249'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.751168.1', 'splitting_polynomials': [[59, -18, 19, -2, 1]], 'twist_count': 2, 'twists': [['2.113.bb_ou', '2.12769.bn_mey', 2]], 'weak_equivalence_count': 4, 'zfv_index': 22, 'zfv_index_factorization': [[2, 1], [11, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 42592, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,F^2-9*F-2*V+50', '11,13*F^2-28*F-9*V+249']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.abb_ou', 'extension_degree': 1, 'extension_label': '2.113.abb_ou', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.827992.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.abb_ou', 'galois_group': '4T3', 'places': [['45', '1', '0', '0'], ['93', '1', '0', '0'], ['41', '1', '0', '0'], ['46', '1', '0', '0']]}