# Stored data for abelian variety isogeny class 2.113.abb_ou, downloaded from the LMFDB on 05 October 2025. {"abvar_count": 10076, "abvar_counts": [10076, 163553632, 2085227111792, 26586881309701504, 339456678781051375676, 4334524326900179609663488, 55347533428287269821496381372, 706732565613825173618719846282752, 9024267971115907492930806859694080112, 115230877634457296866086035262020213426272], "abvar_counts_str": "10076 163553632 2085227111792 26586881309701504 339456678781051375676 4334524326900179609663488 55347533428287269821496381372 706732565613825173618719846282752 9024267971115907492930806859694080112 115230877634457296866086035262020213426272 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.16629269597027, 0.367841913472137], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 87, "curve_counts": [87, 12809, 1445166, 163062321, 18424348527, 2081952341822, 235260581887887, 26584442415590689, 3004041939964143822, 339456738954584385209], "curve_counts_str": "87 12809 1445166 163062321 18424348527 2081952341822 235260581887887 26584442415590689 3004041939964143822 339456738954584385209 ", "curves": ["y^2=55*x^6+12*x^5+16*x^4+97*x^3+110*x^2+3*x+61", "y^2=57*x^6+105*x^5+61*x^4+19*x^3+72*x^2+97*x+83", "y^2=31*x^6+31*x^5+108*x^4+26*x^3+49*x^2+x+96", "y^2=62*x^6+15*x^5+112*x^4+84*x^3+95*x^2+46*x+50", "y^2=25*x^6+24*x^5+79*x^4+25*x^3+111*x^2+31*x+16", "y^2=73*x^6+102*x^5+19*x^4+83*x^3+28*x^2+35*x+35", "y^2=103*x^6+94*x^5+3*x^4+62*x^3+102*x^2+29*x+107", "y^2=17*x^6+38*x^5+24*x^4+17*x^3+46*x^2+112*x+101", "y^2=60*x^6+5*x^5+63*x^4+107*x^3+47*x^2+82*x+73", "y^2=82*x^6+94*x^5+76*x^4+112*x^3+48*x^2+x+80", "y^2=105*x^6+29*x^5+104*x^4+36*x^3+100*x^2+10*x+91", "y^2=3*x^6+107*x^5+98*x^4+3*x^3+10*x^2+37*x+102", "y^2=38*x^6+18*x^5+58*x^4+39*x^3+78*x^2+31*x+63", "y^2=45*x^6+37*x^5+10*x^4+33*x^3+102*x^2+75*x+34", "y^2=47*x^6+58*x^5+57*x^4+95*x^3+31*x^2+48*x+47", "y^2=14*x^6+22*x^5+13*x^4+11*x^3+2*x^2+53*x+74", "y^2=12*x^6+60*x^5+12*x^4+92*x^3+27*x^2+56*x+34", "y^2=101*x^6+28*x^5+7*x^4+16*x^3+18*x^2+20*x+72", "y^2=63*x^6+2*x^5+73*x^4+61*x^3+15*x^2+93*x+17", "y^2=84*x^6+72*x^5+63*x^4+49*x^3+40*x^2+76*x+48", "y^2=93*x^6+14*x^5+25*x^4+43*x^3+43*x^2+20*x+110", "y^2=29*x^6+18*x^5+55*x^4+52*x^3+99*x^2+55*x+43", "y^2=110*x^6+60*x^5+56*x^4+104*x^3+14*x^2+109*x+9", "y^2=2*x^6+48*x^5+26*x^4+70*x^3+48*x^2+56*x+103", "y^2=106*x^6+4*x^5+22*x^4+70*x^3+57*x^2+6*x+86", "y^2=101*x^6+103*x^5+108*x^4+112*x^3+48*x^2+92*x+30", "y^2=53*x^6+70*x^5+71*x^4+78*x^3+20*x^2+21*x+38", "y^2=2*x^6+26*x^5+21*x^4+52*x^3+96*x^2+104*x+80", "y^2=101*x^6+4*x^5+104*x^4+57*x^3+59*x^2+66*x+15", "y^2=86*x^6+39*x^5+32*x^4+53*x^3+99*x^2+5*x+21", "y^2=82*x^6+45*x^5+104*x^4+71*x^3+90*x^2+14*x+43", "y^2=74*x^6+54*x^5+27*x^4+26*x^3+31*x^2+72*x+55", "y^2=38*x^6+83*x^5+16*x^4+83*x^3+70*x^2+10*x+4", "y^2=90*x^6+40*x^5+7*x^4+75*x^3+53*x^2+82*x+81", "y^2=31*x^6+72*x^5+55*x^4+88*x^3+x^2+34*x+92", "y^2=16*x^6+90*x^5+111*x^4+63*x^3+x^2+84*x+2", "y^2=98*x^6+41*x^5+39*x^4+46*x^3+21*x^2+29*x+111", "y^2=61*x^6+93*x^5+2*x^4+9*x^3+112*x^2+48*x+6", "y^2=40*x^6+67*x^5+102*x^4+84*x^3+68*x^2+60*x+21", "y^2=57*x^6+74*x^5+56*x^4+69*x^3+88*x^2+112*x+17", "y^2=63*x^6+111*x^5+61*x^4+99*x^3+82*x^2+67*x+37", "y^2=86*x^6+98*x^5+21*x^4+41*x^3+13*x^2+105*x+110", "y^2=41*x^6+26*x^5+5*x^4+100*x^3+98*x^2+68*x+76", "y^2=24*x^6+78*x^5+88*x^4+92*x^3+32*x^2+23*x+13", "y^2=87*x^6+4*x^5+96*x^4+66*x^3+79*x^2+85*x+79", "y^2=43*x^6+86*x^5+22*x^4+82*x^3+57*x^2+44*x+16", "y^2=26*x^6+5*x^5+9*x^4+16*x^3+30*x^2+39*x+60", "y^2=31*x^6+88*x^5+77*x^4+89*x^3+6*x^2+74*x+17", "y^2=34*x^6+14*x^5+84*x^4+26*x^3+70*x^2+69*x+8", "y^2=37*x^6+67*x^5+67*x^4+34*x^3+35*x^2+17*x+60", "y^2=33*x^6+17*x^5+97*x^4+x^3+105*x^2+57*x+76", "y^2=58*x^6+79*x^5+81*x^4+70*x^3+74*x^2+72*x+18", "y^2=89*x^6+54*x^5+58*x^4+21*x^3+34*x^2+86*x+105", "y^2=40*x^6+51*x^5+20*x^4+17*x^3+77*x^2+52*x+101", "y^2=10*x^6+3*x^5+102*x^4+67*x^3+25*x^2+19*x+20", "y^2=96*x^6+86*x^5+110*x^4+96*x^3+35*x^2+57*x+76", "y^2=65*x^6+23*x^5+41*x^4+70*x^3+77*x^2+85*x+32", "y^2=93*x^6+67*x^5+8*x^4+32*x^3+107*x^2+108*x+58", "y^2=19*x^6+79*x^5+81*x^4+2*x^3+110*x^2+58*x+66", "y^2=21*x^6+109*x^5+14*x^4+38*x^3+16*x^2+40*x+33", "y^2=80*x^6+86*x^5+101*x^4+2*x^3+40*x^2+9*x+90", "y^2=5*x^6+103*x^5+11*x^4+69*x^3+59*x^2+22*x+16", "y^2=23*x^6+17*x^5+18*x^4+59*x^3+19*x^2+4*x+103", "y^2=57*x^6+9*x^5+52*x^4+78*x^3+23*x^2+17*x+44", "y^2=50*x^6+27*x^5+92*x^4+72*x^3+28*x^2+5*x+2", "y^2=20*x^6+76*x^5+16*x^4+41*x^3+30*x^2+106*x+98", "y^2=108*x^6+109*x^5+55*x^4+95*x^3+2*x^2+58*x+50", "y^2=39*x^6+10*x^5+x^4+78*x^3+11*x^2+44*x+108", "y^2=90*x^6+23*x^5+21*x^4+23*x^3+17*x^2+107*x+1", "y^2=89*x^6+86*x^5+61*x^4+30*x^3+97*x^2+77*x+38", "y^2=23*x^6+112*x^5+32*x^4+33*x^2+29", "y^2=34*x^6+112*x^5+99*x^4+53*x^3+97*x^2+100*x+84"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.827992.1"], "geometric_splitting_field": "4.0.751168.1", "geometric_splitting_polynomials": [[59, -18, 19, -2, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 72, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 72, "label": "2.113.abb_ou", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.827992.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -27, 384, -3051, 12769], "poly_str": "1 -27 384 -3051 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -27, 158], "simple_distinct": ["2.113.abb_ou"], "simple_factors": ["2.113.abb_ouA"], "simple_multiplicities": [1], "singular_primes": ["2,F^2-9*F-2*V+50", "11,13*F^2-28*F-9*V+249"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.751168.1", "splitting_polynomials": [[59, -18, 19, -2, 1]], "twist_count": 2, "twists": [["2.113.bb_ou", "2.12769.bn_mey", 2]], "weak_equivalence_count": 4, "zfv_index": 22, "zfv_index_factorization": [[2, 1], [11, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 42592, "zfv_singular_count": 4, "zfv_singular_primes": ["2,F^2-9*F-2*V+50", "11,13*F^2-28*F-9*V+249"]}