| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.127.aw |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 22 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$106$ |
$[106, 15900, 2046118, 260124000, 33038203066, 4195871876700, 532875858455158, 67675234335216000, 8594754750898948426, 1091533853111800609500]$ |
$106$ |
$[106, 15900, 2046118, 260124000, 33038203066, 4195871876700, 532875858455158, 67675234335216000, 8594754750898948426, 1091533853111800609500]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.127.av |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$107$ |
$[107, 15943, 2047124, 260141931, 33038472497, 4195875423856, 532875899765687, 67675234753958643, 8594754754351909628, 1091533853128842928543]$ |
$107$ |
$[107, 15943, 2047124, 260141931, 33038472497, 4195875423856, 532875899765687, 67675234753958643, 8594754754351909628, 1091533853128842928543]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.127.au |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$108$ |
$[108, 15984, 2048004, 260155584, 33038636508, 4195876867056, 532875905291124, 67675234641580800, 8594754750889682508, 1091533853068127860464]$ |
$108$ |
$[108, 15984, 2048004, 260155584, 33038636508, 4195876867056, 532875905291124, 67675234641580800, 8594754750889682508, 1091533853068127860464]$ |
$6$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.127.at |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$109$ |
$[109, 16023, 2048764, 260165451, 33038716519, 4195876867056, 532875891177361, 67675234328293683, 8594754746329113268, 1091533853018984224143]$ |
$109$ |
$[109, 16023, 2048764, 260165451, 33038716519, 4195876867056, 532875891177361, 67675234328293683, 8594754746329113268, 1091533853018984224143]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.127.as |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$110$ |
$[110, 16060, 2049410, 260172000, 33038731550, 4195875958780, 532875868967090, 67675234012848000, 8594754743384520590, 1091533853008323442300]$ |
$110$ |
$[110, 16060, 2049410, 260172000, 33038731550, 4195875958780, 532875868967090, 67675234012848000, 8594754743384520590, 1091533853008323442300]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.127.ar |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$111$ |
$[111, 16095, 2049948, 260175675, 33038698341, 4195874565360, 532875846452403, 67675233798261075, 8594754742824078996, 1091533853031273351975]$ |
$111$ |
$[111, 16095, 2049948, 260175675, 33038698341, 4195874565360, 532875846452403, 67675233798261075, 8594754742824078996, 1091533853031273351975]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
| 1.127.aq |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$112$ |
$[112, 16128, 2050384, 260176896, 33038631472, 4195873011456, 532875828431632, 67675233720987648, 8594754744319099888, 1091533853070792730368]$ |
$112$ |
$[112, 16128, 2050384, 260176896, 33038631472, 4195873011456, 532875828431632, 67675233720987648, 8594754744319099888, 1091533853070792730368]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.127.ap |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$113$ |
$[113, 16159, 2050724, 260176059, 33038543483, 4195871535856, 532875817375469, 67675233774280275, 8594754747042653228, 1091533853109168164839]$ |
$113$ |
$[113, 16159, 2050724, 260176059, 33038543483, 4195871535856, 532875817375469, 67675233774280275, 8594754747042653228, 1091533853109168164839]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.127.ao |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$114$ |
$[114, 16188, 2050974, 260173536, 33038444994, 4195870303356, 532875814007406, 67675233926444928, 8594754750067440978, 1091533853133757027068]$ |
$114$ |
$[114, 16188, 2050974, 260173536, 33038444994, 4195870303356, 532875814007406, 67675233926444928, 8594754750067440978, 1091533853133757027068]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-78}) \) |
$C_2$ |
simple |
| 1.127.an |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$115$ |
$[115, 16215, 2051140, 260169675, 33038344825, 4195869415920, 532875817803535, 67675234134657075, 8594754752606664460, 1091533853138865946575]$ |
$115$ |
$[115, 16215, 2051140, 260169675, 33038344825, 4195869415920, 532875817803535, 67675234134657075, 8594754752606664460, 1091533853138865946575]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-339}) \) |
$C_2$ |
simple |
| 1.127.am |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$116$ |
$[116, 16240, 2051228, 260164800, 33038250116, 4195868923120, 532875827416748, 67675234354963200, 8594754754135821716, 1091533853125239689200]$ |
$116$ |
$[116, 16240, 2051228, 260164800, 33038250116, 4195868923120, 532875827416748, 67675234354963200, 8594754754135821716, 1091533853125239689200]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.127.al |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 11 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$117$ |
$[117, 16263, 2051244, 260159211, 33038166447, 4195868831856, 532875841030377, 67675234549052403, 8594754754427927748, 1091533853098277102943]$ |
$117$ |
$[117, 16263, 2051244, 260159211, 33038166447, 4195868831856, 532875841030377, 67675234549052403, 8594754754427927748, 1091533853098277102943]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.127.ak |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$118$ |
$[118, 16284, 2051194, 260153184, 33038097958, 4195869115356, 532875856646314, 67675234688342400, 8594754753529570198, 1091533853065785167964]$ |
$118$ |
$[118, 16284, 2051194, 260153184, 33038097958, 4195869115356, 532875856646314, 67675234688342400, 8594754753529570198, 1091533853065785167964]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-102}) \) |
$C_2$ |
simple |
| 1.127.aj |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$119$ |
$[119, 16303, 2051084, 260146971, 33038047469, 4195869721456, 532875872312651, 67675234755883923, 8594754751700495588, 1091533853035825550743]$ |
$119$ |
$[119, 16303, 2051084, 260146971, 33038047469, 4195869721456, 532875872312651, 67675234755883923, 8594754751700495588, 1091533853035825550743]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.127.ai |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$120$ |
$[120, 16320, 2050920, 260140800, 33038016600, 4195870580160, 532875886295880, 67675234746547200, 8594754749335066680, 1091533853014996785600]$ |
$120$ |
$[120, 16320, 2050920, 260140800, 33038016600, 4195870580160, 532875886295880, 67675234746547200, 8594754749335066680, 1091533853014996785600]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-111}) \) |
$C_2$ |
simple |
| 1.127.ah |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$121$ |
$[121, 16335, 2050708, 260134875, 33038005891, 4195871610480, 532875897202693, 67675234665913875, 8594754746879939836, 1091533853007325661175]$ |
$121$ |
$[121, 16335, 2050708, 260134875, 33038005891, 4195871610480, 532875897202693, 67675234665913875, 8594754746879939836, 1091533853007325661175]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.127.ag |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$122$ |
$[122, 16348, 2050454, 260129376, 33038014922, 4195872726556, 532875904056422, 67675234528257408, 8594754744758682458, 1091533853013809946268]$ |
$122$ |
$[122, 16348, 2050454, 260129376, 33038014922, 4195872726556, 532875904056422, 67675234528257408, 8594754744758682458, 1091533853013809946268]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-118}) \) |
$C_2$ |
simple |
| 1.127.af |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$123$ |
$[123, 16359, 2050164, 260124459, 33038042433, 4195873843056, 532875906333159, 67675234353954675, 8594754743310784668, 1091533853032557619839]$ |
$123$ |
$[123, 16359, 2050164, 260124459, 33038042433, 4195873843056, 532875906333159, 67675234353954675, 8594754743310784668, 1091533853032557619839]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.127.ae |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$124$ |
$[124, 16368, 2049844, 260120256, 33038086444, 4195874879856, 532875903962596, 67675234166631168, 8594754742749616348, 1091533853059401645168]$ |
$124$ |
$[124, 16368, 2049844, 260120256, 33038086444, 4195874879856, 532875903962596, 67675234166631168, 8594754742749616348, 1091533853059401645168]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.127.ad |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$125$ |
$[125, 16375, 2049500, 260116875, 33038144375, 4195875766000, 532875897298625, 67675233990301875, 8594754743141340500, 1091533853088830419375]$ |
$125$ |
$[125, 16375, 2049500, 260116875, 33038144375, 4195875766000, 532875897298625, 67675233990301875, 8594754743141340500, 1091533853088830419375]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-499}) \) |
$C_2$ |
simple |
| 1.127.ac |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$126$ |
$[126, 16380, 2049138, 260114400, 33038213166, 4195876442940, 532875887064738, 67675233846729600, 8594754744404616606, 1091533853115058707900]$ |
$126$ |
$[126, 16380, 2049138, 260114400, 33038213166, 4195876442940, 532875887064738, 67675233846729600, 8594754744404616606, 1091533853115058707900]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-14}) \) |
$C_2$ |
simple |
| 1.127.ab |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$127$ |
$[127, 16383, 2048764, 260112891, 33038289397, 4195876867056, 532875874279267, 67675233753182163, 8594754746329113268, 1091533853133068510343]$ |
$127$ |
$[127, 16383, 2048764, 260112891, 33038289397, 4195876867056, 532875874279267, 67675233753182163, 8594754746329113268, 1091533853133068510343]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.127.a |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 127 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$128$ |
$[128, 16384, 2048384, 260112384, 33038369408, 4195877011456, 532875860165504, 67675233720729600, 8594754748609397888, 1091533853139470270464]$ |
$128$ |
$[128, 16384, 2048384, 260112384, 33038369408, 4195877011456, 532875860165504, 67675233720729600, 8594754748609397888, 1091533853139470270464]$ |
$10$ |
$0$ |
$1$ |
$1$ |
$2$ |
\(\Q(\sqrt{-127}) \) |
$C_2$ |
simple |
| 1.127.b |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$129$ |
$[129, 16383, 2048004, 260112891, 33038449419, 4195876867056, 532875846051741, 67675233753182163, 8594754750889682508, 1091533853133068510343]$ |
$129$ |
$[129, 16383, 2048004, 260112891, 33038449419, 4195876867056, 532875846051741, 67675233753182163, 8594754750889682508, 1091533853133068510343]$ |
$5$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.127.c |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$130$ |
$[130, 16380, 2047630, 260114400, 33038525650, 4195876442940, 532875833266270, 67675233846729600, 8594754752814179170, 1091533853115058707900]$ |
$130$ |
$[130, 16380, 2047630, 260114400, 33038525650, 4195876442940, 532875833266270, 67675233846729600, 8594754752814179170, 1091533853115058707900]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-14}) \) |
$C_2$ |
simple |
| 1.127.d |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$131$ |
$[131, 16375, 2047268, 260116875, 33038594441, 4195875766000, 532875823032383, 67675233990301875, 8594754754077455276, 1091533853088830419375]$ |
$131$ |
$[131, 16375, 2047268, 260116875, 33038594441, 4195875766000, 532875823032383, 67675233990301875, 8594754754077455276, 1091533853088830419375]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-499}) \) |
$C_2$ |
simple |
| 1.127.e |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$132$ |
$[132, 16368, 2046924, 260120256, 33038652372, 4195874879856, 532875816368412, 67675234166631168, 8594754754469179428, 1091533853059401645168]$ |
$132$ |
$[132, 16368, 2046924, 260120256, 33038652372, 4195874879856, 532875816368412, 67675234166631168, 8594754754469179428, 1091533853059401645168]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.127.f |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$133$ |
$[133, 16359, 2046604, 260124459, 33038696383, 4195873843056, 532875813997849, 67675234353954675, 8594754753908011108, 1091533853032557619839]$ |
$133$ |
$[133, 16359, 2046604, 260124459, 33038696383, 4195873843056, 532875813997849, 67675234353954675, 8594754753908011108, 1091533853032557619839]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.127.g |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$134$ |
$[134, 16348, 2046314, 260129376, 33038723894, 4195872726556, 532875816274586, 67675234528257408, 8594754752460113318, 1091533853013809946268]$ |
$134$ |
$[134, 16348, 2046314, 260129376, 33038723894, 4195872726556, 532875816274586, 67675234528257408, 8594754752460113318, 1091533853013809946268]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-118}) \) |
$C_2$ |
simple |
| 1.127.h |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$135$ |
$[135, 16335, 2046060, 260134875, 33038732925, 4195871610480, 532875823128315, 67675234665913875, 8594754750338855940, 1091533853007325661175]$ |
$135$ |
$[135, 16335, 2046060, 260134875, 33038732925, 4195871610480, 532875823128315, 67675234665913875, 8594754750338855940, 1091533853007325661175]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.127.i |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$136$ |
$[136, 16320, 2045848, 260140800, 33038722216, 4195870580160, 532875834035128, 67675234746547200, 8594754747883729096, 1091533853014996785600]$ |
$136$ |
$[136, 16320, 2045848, 260140800, 33038722216, 4195870580160, 532875834035128, 67675234746547200, 8594754747883729096, 1091533853014996785600]$ |
$16$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-111}) \) |
$C_2$ |
simple |
| 1.127.j |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$137$ |
$[137, 16303, 2045684, 260146971, 33038691347, 4195869721456, 532875848018357, 67675234755883923, 8594754745518300188, 1091533853035825550743]$ |
$137$ |
$[137, 16303, 2045684, 260146971, 33038691347, 4195869721456, 532875848018357, 67675234755883923, 8594754745518300188, 1091533853035825550743]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-427}) \) |
$C_2$ |
simple |
| 1.127.k |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$138$ |
$[138, 16284, 2045574, 260153184, 33038640858, 4195869115356, 532875863684694, 67675234688342400, 8594754743689225578, 1091533853065785167964]$ |
$138$ |
$[138, 16284, 2045574, 260153184, 33038640858, 4195869115356, 532875863684694, 67675234688342400, 8594754743689225578, 1091533853065785167964]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-102}) \) |
$C_2$ |
simple |
| 1.127.l |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 11 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$139$ |
$[139, 16263, 2045524, 260159211, 33038572369, 4195868831856, 532875879300631, 67675234549052403, 8594754742790868028, 1091533853098277102943]$ |
$139$ |
$[139, 16263, 2045524, 260159211, 33038572369, 4195868831856, 532875879300631, 67675234549052403, 8594754742790868028, 1091533853098277102943]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.127.m |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$140$ |
$[140, 16240, 2045540, 260164800, 33038488700, 4195868923120, 532875892914260, 67675234354963200, 8594754743082974060, 1091533853125239689200]$ |
$140$ |
$[140, 16240, 2045540, 260164800, 33038488700, 4195868923120, 532875892914260, 67675234354963200, 8594754743082974060, 1091533853125239689200]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-91}) \) |
$C_2$ |
simple |
| 1.127.n |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$141$ |
$[141, 16215, 2045628, 260169675, 33038393991, 4195869415920, 532875902527473, 67675234134657075, 8594754744612131316, 1091533853138865946575]$ |
$141$ |
$[141, 16215, 2045628, 260169675, 33038393991, 4195869415920, 532875902527473, 67675234134657075, 8594754744612131316, 1091533853138865946575]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-339}) \) |
$C_2$ |
simple |
| 1.127.o |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$142$ |
$[142, 16188, 2045794, 260173536, 33038293822, 4195870303356, 532875906323602, 67675233926444928, 8594754747151354798, 1091533853133757027068]$ |
$142$ |
$[142, 16188, 2045794, 260173536, 33038293822, 4195870303356, 532875906323602, 67675233926444928, 8594754747151354798, 1091533853133757027068]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-78}) \) |
$C_2$ |
simple |
| 1.127.p |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$143$ |
$[143, 16159, 2046044, 260176059, 33038195333, 4195871535856, 532875902955539, 67675233774280275, 8594754750176142548, 1091533853109168164839]$ |
$143$ |
$[143, 16159, 2046044, 260176059, 33038195333, 4195871535856, 532875902955539, 67675233774280275, 8594754750176142548, 1091533853109168164839]$ |
$3$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-283}) \) |
$C_2$ |
simple |
| 1.127.q |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$144$ |
$[144, 16128, 2046384, 260176896, 33038107344, 4195873011456, 532875891899376, 67675233720987648, 8594754752899695888, 1091533853070792730368]$ |
$144$ |
$[144, 16128, 2046384, 260176896, 33038107344, 4195873011456, 532875891899376, 67675233720987648, 8594754752899695888, 1091533853070792730368]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.127.r |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$145$ |
$[145, 16095, 2046820, 260175675, 33038040475, 4195874565360, 532875873878605, 67675233798261075, 8594754754394716780, 1091533853031273351975]$ |
$145$ |
$[145, 16095, 2046820, 260175675, 33038040475, 4195874565360, 532875873878605, 67675233798261075, 8594754754394716780, 1091533853031273351975]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-219}) \) |
$C_2$ |
simple |
| 1.127.s |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$146$ |
$[146, 16060, 2047358, 260172000, 33038007266, 4195875958780, 532875851363918, 67675234012848000, 8594754753834275186, 1091533853008323442300]$ |
$146$ |
$[146, 16060, 2047358, 260172000, 33038007266, 4195875958780, 532875851363918, 67675234012848000, 8594754753834275186, 1091533853008323442300]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-46}) \) |
$C_2$ |
simple |
| 1.127.t |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$147$ |
$[147, 16023, 2048004, 260165451, 33038022297, 4195876867056, 532875829153647, 67675234328293683, 8594754750889682508, 1091533853018984224143]$ |
$147$ |
$[147, 16023, 2048004, 260165451, 33038022297, 4195876867056, 532875829153647, 67675234328293683, 8594754750889682508, 1091533853018984224143]$ |
$3$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.127.u |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$148$ |
$[148, 15984, 2048764, 260155584, 33038102308, 4195876867056, 532875815039884, 67675234641580800, 8594754746329113268, 1091533853068127860464]$ |
$148$ |
$[148, 15984, 2048764, 260155584, 33038102308, 4195876867056, 532875815039884, 67675234641580800, 8594754746329113268, 1091533853068127860464]$ |
$6$ |
$0$ |
$6$ |
$6$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.127.v |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 21 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$149$ |
$[149, 15943, 2049644, 260141931, 33038266319, 4195875423856, 532875820565321, 67675234753958643, 8594754742866886148, 1091533853128842928543]$ |
$149$ |
$[149, 15943, 2049644, 260141931, 33038266319, 4195875423856, 532875820565321, 67675234753958643, 8594754742866886148, 1091533853128842928543]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-67}) \) |
$C_2$ |
simple |
| 1.127.w |
$1$ |
$\F_{127}$ |
$127$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 22 x + 127 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$150$ |
$[150, 15900, 2050650, 260124000, 33038535750, 4195871876700, 532875861875850, 67675234335216000, 8594754746319847350, 1091533853111800609500]$ |
$150$ |
$[150, 15900, 2050650, 260124000, 33038535750, 4195871876700, 532875861875850, 67675234335216000, 8594754746319847350, 1091533853111800609500]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |