Invariants
| Base field: | $\F_{127}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 4 x + 127 x^{2}$ |
| Frobenius angles: | $\pm0.443208306644$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-123}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $124$ | $16368$ | $2049844$ | $260120256$ | $33038086444$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $124$ | $16368$ | $2049844$ | $260120256$ | $33038086444$ | $4195874879856$ | $532875903962596$ | $67675234166631168$ | $8594754742749616348$ | $1091533853059401645168$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+67 x+67$
- $y^2=x^3+91 x+19$
- $y^2=x^3+57 x+57$
- $y^2=x^3+86 x+86$
- $y^2=x^3+17 x+51$
- $y^2=x^3+71 x+86$
- $y^2=x^3+29 x+29$
- $y^2=x^3+57 x+44$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{127}$.
Endomorphism algebra over $\F_{127}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-123}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.127.e | $2$ | (not in LMFDB) |