Invariants
| Base field: | $\F_{127}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 12 x + 127 x^{2}$ |
| Frobenius angles: | $\pm0.678714990332$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-91}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $140$ | $16240$ | $2045540$ | $260164800$ | $33038488700$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $140$ | $16240$ | $2045540$ | $260164800$ | $33038488700$ | $4195868923120$ | $532875892914260$ | $67675234354963200$ | $8594754743082974060$ | $1091533853125239689200$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+121 x+121$
- $y^2=x^3+67 x+74$
- $y^2=x^3+124 x+118$
- $y^2=x^3+55 x+38$
- $y^2=x^3+5 x+5$
- $y^2=x^3+32 x+96$
- $y^2=x^3+92 x+22$
- $y^2=x^3+56 x+56$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{127}$.
Endomorphism algebra over $\F_{127}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-91}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.127.am | $2$ | (not in LMFDB) |