| Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
| 1.121.aw |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$( 1 - 11 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$100$ |
$[100, 14400, 1768900, 214329600, 25937102500, 3138424833600, 379749794608900, 45949729434854400, 5559917308776336100, 672749994880685160000]$ |
$100$ |
$[100, 14400, 1768900, 214329600, 25937102500, 3138424833600, 379749794608900, 45949729434854400, 5559917308776336100, 672749994880685160000]$ |
$2$ |
$0$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |
| 1.121.av |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 21 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$101$ |
$[101, 14443, 1769924, 214348563, 25937406101, 3138429236800, 379749853883501, 45949730185808163, 5559917317802856164, 672749994984092571403]$ |
$101$ |
$[101, 14443, 1769924, 214348563, 25937406101, 3138429236800, 379749853883501, 45949730185808163, 5559917317802856164, 672749994984092571403]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.121.au |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 20 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$102$ |
$[102, 14484, 1770822, 214363200, 25937600502, 3138431372244, 379749872209782, 45949730273644800, 5559917317019872902, 672749994953494048404]$ |
$102$ |
$[102, 14484, 1770822, 214363200, 25937600502, 3138431372244, 379749872209782, 45949730273644800, 5559917317019872902, 672749994953494048404]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-21}) \) |
$C_2$ |
simple |
| 1.121.at |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 19 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$103$ |
$[103, 14523, 1771600, 214374003, 25937707303, 3138431918400, 379749866668303, 45949730063645283, 5559917313290328400, 672749994904515003003]$ |
$103$ |
$[103, 14523, 1771600, 214374003, 25937707303, 3138431918400, 379749866668303, 45949730063645283, 5559917313290328400, 672749994904515003003]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.121.as |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 18 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$104$ |
$[104, 14560, 1772264, 214381440, 25937745704, 3138431427040, 379749849635624, 45949729783426560, 5559917310107272424, 672749994881328364000]$ |
$104$ |
$[104, 14560, 1772264, 214381440, 25937745704, 3138431427040, 379749849635624, 45949729783426560, 5559917310107272424, 672749994881328364000]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-10}) \) |
$C_2$ |
simple |
| 1.121.ar |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 17 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$105$ |
$[105, 14595, 1772820, 214385955, 25937732625, 3138430337280, 379749829641945, 45949729559342595, 5559917308797225780, 672749994889556689875]$ |
$105$ |
$[105, 14595, 1772820, 214385955, 25937732625, 3138430337280, 379749829641945, 45949729559342595, 5559917308797225780, 672749994889556689875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-195}) \) |
$C_2$ |
simple |
| 1.121.aq |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 16 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$106$ |
$[106, 14628, 1773274, 214387968, 25937682826, 3138428988900, 379749812132986, 45949729446294528, 5559917309411270314, 672749994917755224228]$ |
$106$ |
$[106, 14628, 1773274, 214387968, 25937682826, 3138428988900, 379749812132986, 45949729446294528, 5559917309411270314, 672749994917755224228]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.121.ap |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 15 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$107$ |
$[107, 14659, 1773632, 214387875, 25937609027, 3138427634944, 379749800141147, 45949729451695875, 5559917311360580672, 672749994950422277779]$ |
$107$ |
$[107, 14659, 1773632, 214387875, 25937609027, 3138427634944, 379749800141147, 45949729451695875, 5559917311360580672, 672749994950422277779]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-259}) \) |
$C_2$ |
simple |
| 1.121.ao |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 14 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$108$ |
$[108, 14688, 1773900, 214386048, 25937522028, 3138426453600, 379749794870988, 45949729554298368, 5559917313846581100, 672749994974943032928]$ |
$108$ |
$[108, 14688, 1773900, 214386048, 25937522028, 3138426453600, 379749794870988, 45949729554298368, 5559917313846581100, 672749994974943032928]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.121.an |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 13 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$109$ |
$[109, 14715, 1774084, 214382835, 25937430829, 3138425559360, 379749796204069, 45949729718543715, 5559917316129741604, 672749994984396082875]$ |
$109$ |
$[109, 14715, 1774084, 214382835, 25937430829, 3138425559360, 379749796204069, 45949729718543715, 5559917316129741604, 672749994984396082875]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
| 1.121.am |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 12 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$110$ |
$[110, 14740, 1774190, 214378560, 25937342750, 3138425013460, 379749803128190, 45949729905066240, 5559917317675221710, 672749994977735108500]$ |
$110$ |
$[110, 14740, 1774190, 214378560, 25937342750, 3138425013460, 379749803128190, 45949729905066240, 5559917317675221710, 672749994977735108500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-85}) \) |
$C_2$ |
simple |
| 1.121.al |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 - 11 x + 121 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$111$ |
$[111, 14763, 1774224, 214373523, 25937263551, 3138424833600, 379749814096071, 45949730077931043, 5559917318208126864, 672749994958497433803]$ |
$111$ |
$[111, 14763, 1774224, 214373523, 25937263551, 3138424833600, 379749814096071, 45949730077931043, 5559917318208126864, 672749994958497433803]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.121.ak |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 10 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$112$ |
$[112, 14784, 1774192, 214368000, 25937197552, 3138425002944, 379749827318512, 45949730209152000, 5559917317706062192, 672749994932883155904]$ |
$112$ |
$[112, 14784, 1774192, 214368000, 25937197552, 3138425002944, 379749827318512, 45949730209152000, 5559917317706062192, 672749994932883155904]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.121.aj |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 9 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$113$ |
$[113, 14803, 1774100, 214362243, 25937147753, 3138425478400, 379749840997073, 45949730280993603, 5559917316351950900, 672749994907789489603]$ |
$113$ |
$[113, 14803, 1774100, 214362243, 25937147753, 3138425478400, 379749840997073, 45949730280993603, 5559917316351950900, 672749994907789489603]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.121.ai |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 8 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$114$ |
$[114, 14820, 1773954, 214356480, 25937115954, 3138426198180, 379749853501314, 45949730286520320, 5559917314465730034, 672749994889171270500]$ |
$114$ |
$[114, 14820, 1773954, 214356480, 25937115954, 3138426198180, 379749853501314, 45949730286520320, 5559917314465730034, 672749994889171270500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-105}) \) |
$C_2$ |
simple |
| 1.121.ah |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 7 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$115$ |
$[115, 14835, 1773760, 214350915, 25937102875, 3138427088640, 379749863495635, 45949730228816835, 5559917312429544640, 672749994880926595875]$ |
$115$ |
$[115, 14835, 1773760, 214350915, 25937102875, 3138427088640, 379749863495635, 45949730228816835, 5559917312429544640, 672749994880926595875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-435}) \) |
$C_2$ |
simple |
| 1.121.ag |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 6 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$116$ |
$[116, 14848, 1773524, 214345728, 25937108276, 3138428070400, 379749870020756, 45949730119262208, 5559917310617432564, 672749994884372720128]$ |
$116$ |
$[116, 14848, 1773524, 214345728, 25937108276, 3138428070400, 379749870020756, 45949730119262208, 5559917310617432564, 672749994884372720128]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.121.af |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 5 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$117$ |
$[117, 14859, 1773252, 214341075, 25937131077, 3138429063744, 379749872534877, 45949729975200675, 5559917309337226212, 672749994898277932779]$ |
$117$ |
$[117, 14859, 1773252, 214341075, 25937131077, 3138429063744, 379749872534877, 45949729975200675, 5559917309337226212, 672749994898277932779]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.121.ae |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 4 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$118$ |
$[118, 14868, 1772950, 214337088, 25937169478, 3138429993300, 379749870919558, 45949729817311488, 5559917308789494550, 672749994919346603028]$ |
$118$ |
$[118, 14868, 1772950, 214337088, 25937169478, 3138429993300, 379749870919558, 45949729817311488, 5559917308789494550, 672749994919346603028]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.121.ad |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 - 3 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$119$ |
$[119, 14875, 1772624, 214333875, 25937221079, 3138430792000, 379749865455359, 45949729666939875, 5559917309045808464, 672749994943013246875]$ |
$119$ |
$[119, 14875, 1772624, 214333875, 25937221079, 3138430792000, 379749865455359, 45949729666939875, 5559917309045808464, 672749994943013246875]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.121.ac |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - 2 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$120$ |
$[120, 14880, 1772280, 214331520, 25937283000, 3138431404320, 379749856772280, 45949729543610880, 5559917310046435320, 672749994964383732000]$ |
$120$ |
$[120, 14880, 1772280, 214331520, 25937283000, 3138431404320, 379749856772280, 45949729543610880, 5559917310046435320, 672749994964383732000]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-30}) \) |
$C_2$ |
simple |
| 1.121.ab |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 - x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$121$ |
$[121, 14883, 1771924, 214330083, 25937352001, 3138431788800, 379749845780041, 45949729462907523, 5559917311615754164, 672749994979163953203]$ |
$121$ |
$[121, 14883, 1771924, 214330083, 25937352001, 3138431788800, 379749845780041, 45949729462907523, 5559917311615754164, 672749994979163953203]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.121.a |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 121 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$122$ |
$[122, 14884, 1771562, 214329600, 25937424602, 3138431919844, 379749833583242, 45949729434854400, 5559917313492231482, 672749994984434858404]$ |
$122$ |
$[122, 14884, 1771562, 214329600, 25937424602, 3138431919844, 379749833583242, 45949729434854400, 5559917313492231482, 672749994984434858404]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
simple |
| 1.121.b |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$123$ |
$[123, 14883, 1771200, 214330083, 25937497203, 3138431788800, 379749821386443, 45949729462907523, 5559917315368708800, 672749994979163953203]$ |
$123$ |
$[123, 14883, 1771200, 214330083, 25937497203, 3138431788800, 379749821386443, 45949729462907523, 5559917315368708800, 672749994979163953203]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-483}) \) |
$C_2$ |
simple |
| 1.121.c |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 2 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$124$ |
$[124, 14880, 1770844, 214331520, 25937566204, 3138431404320, 379749810394204, 45949729543610880, 5559917316938027644, 672749994964383732000]$ |
$124$ |
$[124, 14880, 1770844, 214331520, 25937566204, 3138431404320, 379749810394204, 45949729543610880, 5559917316938027644, 672749994964383732000]$ |
$12$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-30}) \) |
$C_2$ |
simple |
| 1.121.d |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 3 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$125$ |
$[125, 14875, 1770500, 214333875, 25937628125, 3138430792000, 379749801711125, 45949729666939875, 5559917317938654500, 672749994943013246875]$ |
$125$ |
$[125, 14875, 1770500, 214333875, 25937628125, 3138430792000, 379749801711125, 45949729666939875, 5559917317938654500, 672749994943013246875]$ |
$5$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-19}) \) |
$C_2$ |
simple |
| 1.121.e |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 4 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$126$ |
$[126, 14868, 1770174, 214337088, 25937679726, 3138429993300, 379749796246926, 45949729817311488, 5559917318194968414, 672749994919346603028]$ |
$126$ |
$[126, 14868, 1770174, 214337088, 25937679726, 3138429993300, 379749796246926, 45949729817311488, 5559917318194968414, 672749994919346603028]$ |
$10$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-13}) \) |
$C_2$ |
simple |
| 1.121.f |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 5 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$127$ |
$[127, 14859, 1769872, 214341075, 25937718127, 3138429063744, 379749794631607, 45949729975200675, 5559917317647236752, 672749994898277932779]$ |
$127$ |
$[127, 14859, 1769872, 214341075, 25937718127, 3138429063744, 379749794631607, 45949729975200675, 5559917317647236752, 672749994898277932779]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-51}) \) |
$C_2$ |
simple |
| 1.121.g |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 6 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$128$ |
$[128, 14848, 1769600, 214345728, 25937740928, 3138428070400, 379749797145728, 45949730119262208, 5559917316367030400, 672749994884372720128]$ |
$128$ |
$[128, 14848, 1769600, 214345728, 25937740928, 3138428070400, 379749797145728, 45949730119262208, 5559917316367030400, 672749994884372720128]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-7}) \) |
$C_2$ |
simple |
| 1.121.h |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 7 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$129$ |
$[129, 14835, 1769364, 214350915, 25937746329, 3138427088640, 379749803670849, 45949730228816835, 5559917314554918324, 672749994880926595875]$ |
$129$ |
$[129, 14835, 1769364, 214350915, 25937746329, 3138427088640, 379749803670849, 45949730228816835, 5559917314554918324, 672749994880926595875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-435}) \) |
$C_2$ |
simple |
| 1.121.i |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 8 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$130$ |
$[130, 14820, 1769170, 214356480, 25937733250, 3138426198180, 379749813665170, 45949730286520320, 5559917312518732930, 672749994889171270500]$ |
$130$ |
$[130, 14820, 1769170, 214356480, 25937733250, 3138426198180, 379749813665170, 45949730286520320, 5559917312518732930, 672749994889171270500]$ |
$8$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-105}) \) |
$C_2$ |
simple |
| 1.121.j |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 9 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$131$ |
$[131, 14803, 1769024, 214362243, 25937701451, 3138425478400, 379749826169411, 45949730280993603, 5559917310632512064, 672749994907789489603]$ |
$131$ |
$[131, 14803, 1769024, 214362243, 25937701451, 3138425478400, 379749826169411, 45949730280993603, 5559917310632512064, 672749994907789489603]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-403}) \) |
$C_2$ |
simple |
| 1.121.k |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 10 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$132$ |
$[132, 14784, 1768932, 214368000, 25937651652, 3138425002944, 379749839847972, 45949730209152000, 5559917309278400772, 672749994932883155904]$ |
$132$ |
$[132, 14784, 1768932, 214368000, 25937651652, 3138425002944, 379749839847972, 45949730209152000, 5559917309278400772, 672749994932883155904]$ |
$14$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-6}) \) |
$C_2$ |
simple |
| 1.121.l |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
$1 + 11 x + 121 x^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$133$ |
$[133, 14763, 1768900, 214373523, 25937585653, 3138424833600, 379749853070413, 45949730077931043, 5559917308776336100, 672749994958497433803]$ |
$133$ |
$[133, 14763, 1768900, 214373523, 25937585653, 3138424833600, 379749853070413, 45949730077931043, 5559917308776336100, 672749994958497433803]$ |
$2$ |
$0$ |
$5$ |
$12$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
simple |
| 1.121.m |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 12 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$134$ |
$[134, 14740, 1768934, 214378560, 25937506454, 3138425013460, 379749864038294, 45949729905066240, 5559917309309241254, 672749994977735108500]$ |
$134$ |
$[134, 14740, 1768934, 214378560, 25937506454, 3138425013460, 379749864038294, 45949729905066240, 5559917309309241254, 672749994977735108500]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-85}) \) |
$C_2$ |
simple |
| 1.121.n |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 13 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$135$ |
$[135, 14715, 1769040, 214382835, 25937418375, 3138425559360, 379749870962415, 45949729718543715, 5559917310854721360, 672749994984396082875]$ |
$135$ |
$[135, 14715, 1769040, 214382835, 25937418375, 3138425559360, 379749870962415, 45949729718543715, 5559917310854721360, 672749994984396082875]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-35}) \) |
$C_2$ |
simple |
| 1.121.o |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 14 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$136$ |
$[136, 14688, 1769224, 214386048, 25937327176, 3138426453600, 379749872295496, 45949729554298368, 5559917313137881864, 672749994974943032928]$ |
$136$ |
$[136, 14688, 1769224, 214386048, 25937327176, 3138426453600, 379749872295496, 45949729554298368, 5559917313137881864, 672749994974943032928]$ |
$9$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
simple |
| 1.121.p |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 15 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$137$ |
$[137, 14659, 1769492, 214387875, 25937240177, 3138427634944, 379749867025337, 45949729451695875, 5559917315623882292, 672749994950422277779]$ |
$137$ |
$[137, 14659, 1769492, 214387875, 25937240177, 3138427634944, 379749867025337, 45949729451695875, 5559917315623882292, 672749994950422277779]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-259}) \) |
$C_2$ |
simple |
| 1.121.q |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 16 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$138$ |
$[138, 14628, 1769850, 214387968, 25937166378, 3138428988900, 379749855033498, 45949729446294528, 5559917317573192650, 672749994917755224228]$ |
$138$ |
$[138, 14628, 1769850, 214387968, 25937166378, 3138428988900, 379749855033498, 45949729446294528, 5559917317573192650, 672749994917755224228]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-57}) \) |
$C_2$ |
simple |
| 1.121.r |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 17 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$139$ |
$[139, 14595, 1770304, 214385955, 25937116579, 3138430337280, 379749837524539, 45949729559342595, 5559917318187237184, 672749994889556689875]$ |
$139$ |
$[139, 14595, 1770304, 214385955, 25937116579, 3138430337280, 379749837524539, 45949729559342595, 5559917318187237184, 672749994889556689875]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-195}) \) |
$C_2$ |
simple |
| 1.121.s |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 18 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$140$ |
$[140, 14560, 1770860, 214381440, 25937103500, 3138431427040, 379749817530860, 45949729783426560, 5559917316877190540, 672749994881328364000]$ |
$140$ |
$[140, 14560, 1770860, 214381440, 25937103500, 3138431427040, 379749817530860, 45949729783426560, 5559917316877190540, 672749994881328364000]$ |
$6$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-10}) \) |
$C_2$ |
simple |
| 1.121.t |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 19 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$141$ |
$[141, 14523, 1771524, 214374003, 25937141901, 3138431918400, 379749800498181, 45949730063645283, 5559917313694134564, 672749994904515003003]$ |
$141$ |
$[141, 14523, 1771524, 214374003, 25937141901, 3138431918400, 379749800498181, 45949730063645283, 5559917313694134564, 672749994904515003003]$ |
$2$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-123}) \) |
$C_2$ |
simple |
| 1.121.u |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
✓ |
✓ |
|
|
✓ |
✓ |
$1 + 20 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$142$ |
$[142, 14484, 1772302, 214363200, 25937248702, 3138431372244, 379749794956702, 45949730273644800, 5559917309964590062, 672749994953494048404]$ |
$142$ |
$[142, 14484, 1772302, 214363200, 25937248702, 3138431372244, 379749794956702, 45949730273644800, 5559917309964590062, 672749994953494048404]$ |
$4$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-21}) \) |
$C_2$ |
simple |
| 1.121.v |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
|
✓ |
|
|
✓ |
✓ |
$1 + 21 x + 121 x^{2}$ |
$[0,1]$ |
$0$ |
$1$ |
$0$ |
$1$ |
$0$ |
$143$ |
$[143, 14443, 1773200, 214348563, 25937443103, 3138429236800, 379749813282983, 45949730185808163, 5559917309181606800, 672749994984092571403]$ |
$143$ |
$[143, 14443, 1773200, 214348563, 25937443103, 3138429236800, 379749813282983, 45949730185808163, 5559917309181606800, 672749994984092571403]$ |
$1$ |
$0$ |
$2$ |
$2$ |
$1$ |
\(\Q(\sqrt{-43}) \) |
$C_2$ |
simple |
| 1.121.w |
$1$ |
$\F_{11^{2}}$ |
$11$ |
✓ |
✓ |
|
|
✓ |
✓ |
✓ |
✓ |
$( 1 + 11 x )^{2}$ |
$[\frac{1}{2},\frac{1}{2}]$ |
$1$ |
$0$ |
$1$ |
$0$ |
$1$ |
$144$ |
$[144, 14400, 1774224, 214329600, 25937746704, 3138424833600, 379749872557584, 45949729434854400, 5559917318208126864, 672749994880685160000]$ |
$144$ |
$[144, 14400, 1774224, 214329600, 25937746704, 3138424833600, 379749872557584, 45949729434854400, 5559917318208126864, 672749994880685160000]$ |
$2$ |
$0$ |
$5$ |
$6$ |
$1$ |
\(\Q\) |
Trivial |
simple |