Invariants
| Base field: | $\F_{11^{2}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 9 x + 121 x^{2}$ |
| Frobenius angles: | $\pm0.634154110650$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-403}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $2$ |
| Isomorphism classes: | 2 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $131$ | $14803$ | $1769024$ | $214362243$ | $25937701451$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $131$ | $14803$ | $1769024$ | $214362243$ | $25937701451$ | $3138425478400$ | $379749826169411$ | $45949730280993603$ | $5559917310632512064$ | $672749994907789489603$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{94} x+a^{95}$
- $y^2=x^3+a^{54} x+a^{55}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11^{2}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-403}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.121.aj | $2$ | (not in LMFDB) |