Invariants
| Base field: | $\F_{11^{2}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 8 x + 121 x^{2}$ |
| Frobenius angles: | $\pm0.381535076314$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-105}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $114$ | $14820$ | $1773954$ | $214356480$ | $25937115954$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $114$ | $14820$ | $1773954$ | $214356480$ | $25937115954$ | $3138426198180$ | $379749853501314$ | $45949730286520320$ | $5559917314465730034$ | $672749994889171270500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{80} x+a^{81}$
- $y^2=x^3+10 x+a^{61}$
- $y^2=x^3+a^{10} x+a^{11}$
- $y^2=x^3+a^{90} x+a^{91}$
- $y^2=x^3+a^{40} x+a^{41}$
- $y^2=x^3+a^{65} x+a^{66}$
- $y^2=x^3+a^{95} x+3$
- $y^2=x^3+a^{20} x+a^{21}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11^{2}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-105}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.121.i | $2$ | (not in LMFDB) |