Learn more

Refine search


Results (42 matches)

  displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
16.4.212...000.1 $x^{16} - 9 x^{14} + 22 x^{12} - 12 x^{10} - 30 x^{8} + 57 x^{6} - 38 x^{4} + 9 x^{2} + 1$ $2^{16}\cdot 3^{12}\cdot 5^{14}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $6181.12911905$
16.4.212...000.2 $x^{16} - 6 x^{14} + 7 x^{12} + 27 x^{10} - 75 x^{8} + 3 x^{6} + 22 x^{4} - 9 x^{2} + 1$ $2^{16}\cdot 3^{12}\cdot 5^{14}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $7270.64865599$
16.4.212...000.3 $x^{16} - 2 x^{14} - 7 x^{12} + 31 x^{10} - 35 x^{8} - 4 x^{6} + 38 x^{4} - 22 x^{2} + 1$ $2^{16}\cdot 3^{12}\cdot 5^{14}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $7303.182009845615$
16.8.419...000.2 $x^{16} - 8 x^{15} + 26 x^{14} - 32 x^{13} - 34 x^{12} + 156 x^{11} - 156 x^{10} - 36 x^{9} + 117 x^{8} + 44 x^{7} - 56 x^{6} - 64 x^{5} - 4 x^{4} + 48 x^{3} + 6 x^{2} - 8 x + 1$ $2^{36}\cdot 5^{14}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $24523.1097293$
16.8.419...000.3 $x^{16} - 8 x^{14} + 48 x^{12} - 176 x^{10} + 380 x^{8} - 496 x^{6} + 368 x^{4} - 128 x^{2} + 16$ $2^{36}\cdot 5^{14}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $33070.3509097$
16.0.419...000.8 $x^{16} - 8 x^{15} + 34 x^{14} - 88 x^{13} + 148 x^{12} - 148 x^{11} + 66 x^{10} + 16 x^{9} + 23 x^{8} - 68 x^{7} + 74 x^{6} - 4 x^{5} + 18 x^{4} - 16 x^{3} + 16 x^{2} - 4 x + 1$ $2^{36}\cdot 5^{14}$ $C_2^3:\OD_{16}$ (as 16T252) $[2]$ $2249.80090023$
16.0.419...000.9 $x^{16} + 8 x^{14} + 48 x^{12} + 176 x^{10} + 380 x^{8} + 496 x^{6} + 368 x^{4} + 128 x^{2} + 16$ $2^{36}\cdot 5^{14}$ $C_2^3:\OD_{16}$ (as 16T252) $[2]$ $3033.94251663$
16.8.229...625.3 $x^{16} - x^{15} - 9 x^{14} + 31 x^{13} - 27 x^{12} - 81 x^{11} + 319 x^{10} - 467 x^{9} + 33 x^{8} + 614 x^{7} - 284 x^{6} - 417 x^{5} + 228 x^{4} + 173 x^{3} - 126 x^{2} + 13 x + 1$ $3^{12}\cdot 5^{14}\cdot 29^{4}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $53785.3933525$
16.0.229...625.4 $x^{16} - 3 x^{15} + 14 x^{14} - 28 x^{13} + 83 x^{12} - 153 x^{11} + 251 x^{10} - 444 x^{9} + 583 x^{8} - 618 x^{7} + 889 x^{6} - 449 x^{5} + 693 x^{4} - 56 x^{3} + 61 x^{2} + 16 x + 1$ $3^{12}\cdot 5^{14}\cdot 29^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2]$ $2225.39398394$
16.8.229...625.4 $x^{16} - 8 x^{14} - 22 x^{12} + 214 x^{10} + 115 x^{8} - 1291 x^{6} - 217 x^{4} + 2 x^{2} + 1$ $3^{12}\cdot 5^{14}\cdot 29^{4}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $62311.8375644$
16.0.229...625.5 $x^{16} - 3 x^{15} + 7 x^{14} - 19 x^{13} + 46 x^{12} - 78 x^{11} + 55 x^{10} - 132 x^{9} + 199 x^{8} + 79 x^{7} + 40 x^{6} + 59 x^{5} + 26 x^{4} + 728 x^{3} + 1273 x^{2} + 659 x + 541$ $3^{12}\cdot 5^{14}\cdot 29^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2]$ $2578.17931228$
16.8.123...264.1 $x^{16} - x^{14} - 7 x^{12} - 62 x^{10} + 338 x^{8} - 758 x^{6} + 993 x^{4} - 557 x^{2} + 1$ $2^{8}\cdot 13^{4}\cdot 17^{14}$ $C_2^3:\OD_{16}$ (as 16T252) $[2]$ $1559814.12702$
16.0.123...264.2 $x^{16} + x^{14} - 7 x^{12} + 62 x^{10} + 338 x^{8} + 758 x^{6} + 993 x^{4} + 557 x^{2} + 1$ $2^{8}\cdot 13^{4}\cdot 17^{14}$ $C_2^3:\OD_{16}$ (as 16T252) $[4, 4]$ $33880.9965679$
16.0.159...625.1 $x^{16} + 21 x^{14} + 247 x^{12} + 2208 x^{10} + 11955 x^{8} + 37452 x^{6} + 69247 x^{4} + 69189 x^{2} + 22801$ $3^{12}\cdot 5^{14}\cdot 149^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 6]$ $20406.895131$
16.8.159...625.1 $x^{16} - 32 x^{14} + 338 x^{12} - 1934 x^{10} + 7135 x^{8} - 17959 x^{6} + 32123 x^{4} - 39622 x^{2} + 22801$ $3^{12}\cdot 5^{14}\cdot 149^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2]$ $870955.231274$
16.8.159...625.3 $x^{16} - 4 x^{15} - 27 x^{14} + 102 x^{13} + 341 x^{12} - 1044 x^{11} - 2575 x^{10} + 5381 x^{9} + 12504 x^{8} - 12143 x^{7} - 36865 x^{6} - 357 x^{5} + 56471 x^{4} + 34614 x^{3} - 29328 x^{2} - 21677 x - 2999$ $3^{12}\cdot 5^{14}\cdot 149^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2]$ $617492.7056341398$
16.16.546...000.2 $x^{16} - 36 x^{14} + 452 x^{12} - 2448 x^{10} + 6200 x^{8} - 6992 x^{6} + 2832 x^{4} - 384 x^{2} + 16$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $56035272.1767$
16.16.546...000.3 $x^{16} - 32 x^{14} + 398 x^{12} - 2424 x^{10} + 7355 x^{8} - 9504 x^{6} + 2278 x^{4} - 112 x^{2} + 1$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $83570475.8758$
16.8.546...000.3 $x^{16} - 16 x^{14} + 122 x^{12} - 868 x^{10} + 3915 x^{8} - 5572 x^{6} + 2042 x^{4} - 2924 x^{2} + 1681$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2]$ $5126884.12499$
16.0.546...000.4 $x^{16} + 16 x^{14} + 142 x^{12} + 708 x^{10} + 4635 x^{8} + 12252 x^{6} + 21422 x^{4} + 17684 x^{2} + 10201$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2, 16]$ $20680.5664472$
16.8.546...000.4 $x^{16} - 8 x^{14} + 8 x^{12} - 56 x^{10} + 1340 x^{8} - 8576 x^{6} + 27728 x^{4} - 34848 x^{2} + 16$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2]$ $6587502.17444$
16.0.546...000.5 $x^{16} + 36 x^{14} + 452 x^{12} + 2448 x^{10} + 6200 x^{8} + 6992 x^{6} + 2832 x^{4} + 384 x^{2} + 16$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2, 8]$ $58305.1656546$
16.0.546...000.6 $x^{16} + 16 x^{14} + 122 x^{12} + 868 x^{10} + 3915 x^{8} + 5572 x^{6} + 2042 x^{4} + 2924 x^{2} + 1681$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2, 2]$ $169593.643227$
16.0.546...000.7 $x^{16} - 16 x^{14} + 142 x^{12} - 708 x^{10} + 4635 x^{8} - 12252 x^{6} + 21422 x^{4} - 17684 x^{2} + 10201$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2, 2]$ $167283.833331$
16.0.546...000.8 $x^{16} + 12 x^{14} + 78 x^{12} + 464 x^{10} + 1915 x^{8} + 4624 x^{6} + 12218 x^{4} + 12132 x^{2} + 32761$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2, 20]$ $20680.5664472$
16.0.546...000.9 $x^{16} + 32 x^{14} + 398 x^{12} + 2424 x^{10} + 7355 x^{8} + 9504 x^{6} + 2278 x^{4} + 112 x^{2} + 1$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2, 10]$ $58305.1656546$
16.0.546...000.10 $x^{16} + 8 x^{14} + 8 x^{12} + 56 x^{10} + 1340 x^{8} + 8576 x^{6} + 27728 x^{4} + 34848 x^{2} + 16$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2, 2]$ $342357.857311$
16.0.546...000.11 $x^{16} - 12 x^{14} + 78 x^{12} - 464 x^{10} + 1915 x^{8} - 4624 x^{6} + 12218 x^{4} - 12132 x^{2} + 32761$ $2^{36}\cdot 5^{14}\cdot 19^{4}$ $C_2^3:\OD_{16}$ (as 16T252) $[2, 2, 2]$ $249485.529644$
16.8.156...496.3 $x^{16} - 16 x^{13} - 100 x^{12} + 192 x^{11} + 192 x^{10} - 816 x^{9} + 558 x^{8} + 992 x^{7} - 1440 x^{6} + 48 x^{5} + 876 x^{4} - 32 x^{3} - 864 x^{2} + 400 x - 47$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $39472366.274727136$
16.4.156...496.6 $x^{16} - 8 x^{14} - 144 x^{11} - 32 x^{10} + 288 x^{9} - 500 x^{8} - 864 x^{7} + 2256 x^{6} - 1536 x^{5} - 3984 x^{4} + 11232 x^{3} - 12960 x^{2} + 8064 x - 1764$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $32043885.56969842$
16.4.156...496.12 $x^{16} - 16 x^{13} - 28 x^{12} + 144 x^{11} + 192 x^{10} - 288 x^{9} - 1686 x^{8} - 1600 x^{7} + 2784 x^{6} + 8112 x^{5} + 7548 x^{4} - 176 x^{3} - 5472 x^{2} - 3488 x - 623$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $27536655.60251929$
16.8.156...496.17 $x^{16} - 92 x^{12} - 192 x^{11} - 288 x^{10} + 96 x^{9} + 1710 x^{8} + 288 x^{7} - 2496 x^{6} - 288 x^{5} + 1588 x^{4} + 96 x^{3} - 480 x^{2} + 49$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $45933246.44539841$
16.8.156...496.18 $x^{16} - 24 x^{14} + 276 x^{12} - 1944 x^{10} + 8658 x^{8} - 23544 x^{6} + 33804 x^{4} - 12312 x^{2} + 81$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $55296648.09375668$
16.4.156...496.26 $x^{16} - 8 x^{14} - 144 x^{11} - 32 x^{10} + 576 x^{9} - 500 x^{8} - 1056 x^{7} + 3984 x^{6} - 2688 x^{5} - 5424 x^{4} + 12384 x^{3} - 9504 x^{2} + 2880 x - 36$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $12051294.281557677$
16.8.156...496.29 $x^{16} - 24 x^{14} + 252 x^{12} - 1512 x^{10} + 4518 x^{8} - 6696 x^{6} + 6588 x^{4} - 7128 x^{2} + 3969$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $47518730.249473095$
16.0.156...496.104 $x^{16} + 24 x^{14} + 276 x^{12} + 1944 x^{10} + 8658 x^{8} + 23544 x^{6} + 33804 x^{4} + 12312 x^{2} + 81$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) $[10]$ $739085.6520508757$
16.4.156...496.175 $x^{16} + 24 x^{14} + 108 x^{12} - 360 x^{10} - 4590 x^{8} - 20520 x^{6} - 42444 x^{4} - 73224 x^{2} + 81$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $38575968.41125807$
16.4.156...496.183 $x^{16} + 24 x^{14} + 108 x^{12} - 1512 x^{10} - 7470 x^{8} - 13608 x^{6} - 9612 x^{4} - 648 x^{2} + 81$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $12467270.36381131$
16.4.156...496.202 $x^{16} - 24 x^{14} + 108 x^{12} + 1512 x^{10} - 7470 x^{8} + 13608 x^{6} - 9612 x^{4} + 648 x^{2} + 81$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $33149948.509333484$
16.4.156...496.213 $x^{16} - 24 x^{14} + 108 x^{12} + 360 x^{10} - 4590 x^{8} + 20520 x^{6} - 42444 x^{4} + 73224 x^{2} + 81$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $14507926.840175623$
16.0.156...496.214 $x^{16} - 8 x^{14} - 16 x^{13} + 64 x^{12} + 192 x^{11} + 112 x^{10} - 672 x^{9} - 1472 x^{8} - 1376 x^{7} + 1696 x^{6} + 8000 x^{5} + 17312 x^{4} + 23360 x^{3} + 21760 x^{2} + 12416 x + 3832$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) $[10]$ $527580.9759152753$
16.0.156...496.216 $x^{16} + 24 x^{14} + 252 x^{12} + 1512 x^{10} + 4518 x^{8} + 6696 x^{6} + 6588 x^{4} + 7128 x^{2} + 3969$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) $[10]$ $635127.3167862555$
16.0.156...496.233 $x^{16} + 52 x^{12} - 96 x^{11} + 192 x^{10} - 96 x^{9} + 846 x^{8} - 2400 x^{7} + 6912 x^{6} - 11232 x^{5} + 17764 x^{4} - 18048 x^{3} + 19392 x^{2} - 9216 x + 7441$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) $[10]$ $613936.0082432167$
16.4.156...496.244 $x^{16} - 8 x^{14} - 16 x^{13} - 8 x^{12} + 240 x^{11} + 448 x^{10} - 864 x^{9} - 2252 x^{8} + 928 x^{7} + 5200 x^{6} + 1376 x^{5} - 3040 x^{4} - 2464 x^{3} - 416 x^{2} + 704 x + 412$ $2^{68}\cdot 3^{12}$ $C_2^3:\OD_{16}$ (as 16T252) trivial $10356182.912776114$
  displayed columns for results