Normalized defining polynomial
\( x^{16} - 3 x^{15} + 7 x^{14} - 19 x^{13} + 46 x^{12} - 78 x^{11} + 55 x^{10} - 132 x^{9} + 199 x^{8} + \cdots + 541 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(2294177990240478515625\)
\(\medspace = 3^{12}\cdot 5^{14}\cdot 29^{4}\)
|
| |
Root discriminant: | \(21.63\) |
| |
Galois root discriminant: | $3^{3/4}5^{7/8}29^{1/2}\approx 50.19248452708817$ | ||
Ramified primes: |
\(3\), \(5\), \(29\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.47897578125.1 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5}a^{11}+\frac{2}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{1}{5}a^{6}-\frac{1}{5}a^{5}+\frac{2}{5}a^{4}+\frac{1}{5}a^{3}+\frac{1}{5}a^{2}-\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{12}-\frac{2}{5}a^{10}+\frac{2}{5}a^{9}-\frac{1}{5}a^{8}+\frac{2}{5}a^{7}+\frac{1}{5}a^{6}-\frac{1}{5}a^{5}+\frac{2}{5}a^{4}-\frac{1}{5}a^{3}+\frac{1}{5}a^{2}+\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{13}+\frac{1}{5}a^{10}-\frac{2}{5}a^{9}-\frac{1}{5}a^{8}-\frac{2}{5}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{4}-\frac{2}{5}a^{3}-\frac{2}{5}a^{2}+\frac{2}{5}a-\frac{1}{5}$, $\frac{1}{25}a^{14}+\frac{1}{25}a^{13}+\frac{2}{25}a^{12}-\frac{12}{25}a^{10}+\frac{9}{25}a^{9}-\frac{6}{25}a^{8}-\frac{12}{25}a^{7}+\frac{2}{5}a^{6}-\frac{8}{25}a^{5}+\frac{8}{25}a^{4}-\frac{7}{25}a^{3}+\frac{1}{25}a^{2}+\frac{1}{5}a-\frac{11}{25}$, $\frac{1}{97\cdots 75}a^{15}+\frac{90\cdots 96}{97\cdots 75}a^{14}-\frac{66\cdots 98}{97\cdots 75}a^{13}+\frac{18\cdots 07}{19\cdots 55}a^{12}-\frac{87\cdots 32}{97\cdots 75}a^{11}+\frac{20\cdots 94}{97\cdots 75}a^{10}-\frac{18\cdots 61}{97\cdots 75}a^{9}+\frac{27\cdots 98}{97\cdots 75}a^{8}-\frac{11\cdots 69}{19\cdots 55}a^{7}+\frac{39\cdots 67}{97\cdots 75}a^{6}+\frac{19\cdots 73}{97\cdots 75}a^{5}-\frac{17\cdots 32}{97\cdots 75}a^{4}-\frac{16\cdots 89}{97\cdots 75}a^{3}-\frac{91\cdots 47}{19\cdots 55}a^{2}+\frac{10\cdots 64}{31\cdots 25}a-\frac{54\cdots 39}{19\cdots 55}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{2}$, which has order $4$ |
| |
Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{196956895747}{142623634607275}a^{15}-\frac{851232556477}{142623634607275}a^{14}+\frac{418423802757}{28524726921455}a^{13}-\frac{5186504291033}{142623634607275}a^{12}+\frac{13208446275606}{142623634607275}a^{11}-\frac{25677709131639}{142623634607275}a^{10}+\frac{26946821453642}{142623634607275}a^{9}-\frac{6378246767381}{28524726921455}a^{8}+\frac{67588934868528}{142623634607275}a^{7}-\frac{39404385511816}{142623634607275}a^{6}-\frac{31792439440367}{142623634607275}a^{5}+\frac{24593112320769}{142623634607275}a^{4}-\frac{1009140356722}{28524726921455}a^{3}+\frac{134495773280741}{142623634607275}a^{2}+\frac{31116610182768}{142623634607275}a-\frac{35546078503196}{142623634607275}$, $\frac{21\cdots 38}{97\cdots 75}a^{15}-\frac{62\cdots 62}{97\cdots 75}a^{14}+\frac{14\cdots 51}{97\cdots 75}a^{13}-\frac{15\cdots 68}{39\cdots 11}a^{12}+\frac{94\cdots 84}{97\cdots 75}a^{11}-\frac{16\cdots 03}{97\cdots 75}a^{10}+\frac{10\cdots 52}{97\cdots 75}a^{9}-\frac{27\cdots 66}{97\cdots 75}a^{8}+\frac{87\cdots 29}{19\cdots 55}a^{7}+\frac{13\cdots 81}{97\cdots 75}a^{6}+\frac{78\cdots 39}{97\cdots 75}a^{5}+\frac{29\cdots 64}{97\cdots 75}a^{4}+\frac{11\cdots 28}{97\cdots 75}a^{3}+\frac{30\cdots 01}{19\cdots 55}a^{2}+\frac{59\cdots 42}{31\cdots 25}a+\frac{18\cdots 26}{19\cdots 55}$, $\frac{25\cdots 72}{97\cdots 75}a^{15}-\frac{17\cdots 42}{97\cdots 75}a^{14}-\frac{30\cdots 48}{19\cdots 55}a^{13}+\frac{48\cdots 02}{97\cdots 75}a^{12}-\frac{13\cdots 19}{97\cdots 75}a^{11}+\frac{43\cdots 76}{97\cdots 75}a^{10}-\frac{11\cdots 93}{97\cdots 75}a^{9}+\frac{30\cdots 11}{19\cdots 55}a^{8}-\frac{16\cdots 42}{97\cdots 75}a^{7}+\frac{33\cdots 54}{97\cdots 75}a^{6}-\frac{22\cdots 87}{97\cdots 75}a^{5}-\frac{15\cdots 26}{97\cdots 75}a^{4}+\frac{12\cdots 98}{39\cdots 11}a^{3}-\frac{17\cdots 39}{97\cdots 75}a^{2}+\frac{43\cdots 23}{31\cdots 25}a-\frac{48\cdots 56}{97\cdots 75}$, $\frac{47\cdots 02}{19\cdots 55}a^{15}-\frac{64\cdots 04}{97\cdots 75}a^{14}+\frac{12\cdots 11}{97\cdots 75}a^{13}-\frac{34\cdots 98}{97\cdots 75}a^{12}+\frac{16\cdots 33}{19\cdots 55}a^{11}-\frac{11\cdots 27}{97\cdots 75}a^{10}-\frac{90\cdots 41}{97\cdots 75}a^{9}-\frac{12\cdots 11}{97\cdots 75}a^{8}+\frac{27\cdots 03}{97\cdots 75}a^{7}+\frac{95\cdots 67}{19\cdots 55}a^{6}-\frac{14\cdots 48}{97\cdots 75}a^{5}+\frac{14\cdots 38}{97\cdots 75}a^{4}+\frac{42\cdots 78}{97\cdots 75}a^{3}+\frac{13\cdots 66}{97\cdots 75}a^{2}+\frac{20\cdots 33}{63\cdots 05}a+\frac{14\cdots 49}{97\cdots 75}$, $\frac{71\cdots 53}{97\cdots 75}a^{15}-\frac{19\cdots 82}{97\cdots 75}a^{14}+\frac{31\cdots 91}{97\cdots 75}a^{13}-\frac{15\cdots 59}{19\cdots 55}a^{12}+\frac{20\cdots 24}{97\cdots 75}a^{11}-\frac{26\cdots 38}{97\cdots 75}a^{10}-\frac{25\cdots 78}{97\cdots 75}a^{9}-\frac{30\cdots 36}{97\cdots 75}a^{8}+\frac{20\cdots 49}{19\cdots 55}a^{7}+\frac{10\cdots 81}{97\cdots 75}a^{6}-\frac{16\cdots 06}{97\cdots 75}a^{5}-\frac{32\cdots 46}{97\cdots 75}a^{4}+\frac{10\cdots 68}{97\cdots 75}a^{3}+\frac{15\cdots 41}{39\cdots 11}a^{2}+\frac{34\cdots 27}{31\cdots 25}a+\frac{90\cdots 92}{19\cdots 55}$, $\frac{28\cdots 76}{97\cdots 75}a^{15}-\frac{12\cdots 83}{97\cdots 75}a^{14}+\frac{30\cdots 03}{97\cdots 75}a^{13}-\frac{77\cdots 53}{97\cdots 75}a^{12}+\frac{19\cdots 58}{97\cdots 75}a^{11}-\frac{37\cdots 88}{97\cdots 75}a^{10}+\frac{41\cdots 88}{97\cdots 75}a^{9}-\frac{52\cdots 88}{97\cdots 75}a^{8}+\frac{10\cdots 98}{97\cdots 75}a^{7}-\frac{51\cdots 08}{97\cdots 75}a^{6}-\frac{46\cdots 76}{19\cdots 55}a^{5}+\frac{62\cdots 21}{97\cdots 75}a^{4}+\frac{35\cdots 24}{97\cdots 75}a^{3}+\frac{16\cdots 11}{97\cdots 75}a^{2}+\frac{19\cdots 19}{31\cdots 25}a-\frac{35\cdots 56}{97\cdots 75}$, $\frac{62\cdots 62}{97\cdots 75}a^{15}-\frac{11\cdots 99}{97\cdots 75}a^{14}+\frac{29\cdots 18}{97\cdots 75}a^{13}-\frac{65\cdots 12}{97\cdots 75}a^{12}+\frac{15\cdots 61}{97\cdots 75}a^{11}-\frac{67\cdots 23}{19\cdots 55}a^{10}+\frac{42\cdots 49}{97\cdots 75}a^{9}+\frac{15\cdots 12}{97\cdots 75}a^{8}-\frac{13\cdots 58}{97\cdots 75}a^{7}+\frac{20\cdots 09}{97\cdots 75}a^{6}-\frac{21\cdots 81}{97\cdots 75}a^{5}+\frac{31\cdots 98}{97\cdots 75}a^{4}-\frac{36\cdots 51}{97\cdots 75}a^{3}+\frac{14\cdots 79}{97\cdots 75}a^{2}-\frac{67\cdots 17}{31\cdots 25}a-\frac{52\cdots 14}{97\cdots 75}$
|
| |
Regulator: | \( 2578.17931228 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2578.17931228 \cdot 4}{2\cdot\sqrt{2294177990240478515625}}\cr\approx \mathstrut & 0.261498081689 \end{aligned}\]
Galois group
$C_2^3:\OD_{16}$ (as 16T252):
A solvable group of order 128 |
The 32 conjugacy class representatives for $C_2^3:\OD_{16}$ |
Character table for $C_2^3:\OD_{16}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.0.47897578125.1, 8.4.56953125.1, 8.4.1064390625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.2294177990240478515625.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.4.4.12a1.1 | $x^{16} + 8 x^{15} + 24 x^{14} + 32 x^{13} + 24 x^{12} + 48 x^{11} + 96 x^{10} + 64 x^{9} + 24 x^{8} + 96 x^{7} + 96 x^{6} + 32 x^{4} + 64 x^{3} + 3 x^{2} + 16$ | $4$ | $4$ | $12$ | $C_8: C_2$ | $$[\ ]_{4}^{4}$$ |
\(5\)
| 5.1.8.7a1.4 | $x^{8} + 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ |
5.1.8.7a1.4 | $x^{8} + 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ | |
\(29\)
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |