Show commands: Magma
Group invariants
Abstract group: | $C_2^3:\OD_{16}$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $252$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,13,8,15,5,10,4,11)(2,14,7,16,6,9,3,12)$, $(1,2)(3,7)(4,8)(5,6)(9,13)(10,14)$, $(3,8)(4,7)(9,13)(10,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $C_8:C_2$ x 4, $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $(C_8:C_2):C_2$ x 2, $C_2^3 : C_4 $ x 2, $C_2 \times (C_8:C_2)$ x 2, $C_2 \times (C_2^2:C_4)$ $64$: 16T72, 16T76, 16T95 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_8:C_2$, $(C_8:C_2):C_2$, $C_2^3: C_4$
Low degree siblings
16T252 x 15, 32T574 x 8, 32T575 x 8, 32T576 x 4, 32T577 x 4, 32T578 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,13)(10,14)(11,16)(12,15)$ |
2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,14)(10,13)(11,15)(12,16)$ |
2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2E | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,14)(10,13)(11,15)(12,16)$ |
2F | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,13)(10,14)(11,16)(12,15)$ |
2G | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,10)(11,12)(13,14)(15,16)$ |
2H | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)$ |
2I | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2J | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 6)( 2, 5)( 9,14)(10,13)(11,12)(15,16)$ |
2K | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)(11,16)(12,15)$ |
2L | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 1, 6)( 2, 5)(11,16)(12,15)$ |
2M | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,14)(10,13)(11,12)(15,16)$ |
4A1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 8, 5, 4)( 2, 7, 6, 3)( 9,15,14,11)(10,16,13,12)$ |
4A-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,11,14,15)(10,12,13,16)$ |
4B1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,16,14,12)(10,15,13,11)$ |
4B-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 8, 5, 4)( 2, 7, 6, 3)( 9,12,14,16)(10,11,13,15)$ |
4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 8, 5, 4)( 2, 7, 6, 3)( 9,11,14,15)(10,12,13,16)$ |
4D | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 4, 5, 8)( 2, 3, 6, 7)( 9,12,14,16)(10,11,13,15)$ |
4E1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
4E-1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,15,10,16)(11,13,12,14)$ |
4F1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,15,10,16)(11,13,12,14)$ |
4F-1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,11,10,12)(13,16,14,15)$ |
8A1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,15, 8,14, 5,11, 4, 9)( 2,16, 7,13, 6,12, 3,10)$ |
8A-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,14, 4,15, 5, 9, 8,11)( 2,13, 3,16, 6,10, 7,12)$ |
8B1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,15, 4, 9, 5,11, 8,14)( 2,16, 3,10, 6,12, 7,13)$ |
8B-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,14, 8,11, 5, 9, 4,15)( 2,13, 7,12, 6,10, 3,16)$ |
8C1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,12, 4, 9, 5,16, 8,14)( 2,11, 3,10, 6,15, 7,13)$ |
8C-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,10, 3,16, 5,13, 7,12)( 2, 9, 4,15, 6,14, 8,11)$ |
8D1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,12, 8,14, 5,16, 4, 9)( 2,11, 7,13, 6,15, 3,10)$ |
8D-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,10, 7,12, 5,13, 3,16)( 2, 9, 8,11, 6,14, 4,15)$ |
Malle's constant $a(G)$: $1/4$
Character table
32 x 32 character table
Regular extensions
Data not computed