Normalized defining polynomial
\( x^{16} - 24x^{14} + 252x^{12} - 1512x^{10} + 4518x^{8} - 6696x^{6} + 6588x^{4} - 7128x^{2} + 3969 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(156853697876420445125738496\)
\(\medspace = 2^{68}\cdot 3^{12}\)
|
| |
Root discriminant: | \(43.37\) |
| |
Galois root discriminant: | $2^{141/32}3^{3/4}\approx 48.33418048348305$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6}a^{4}-\frac{1}{2}$, $\frac{1}{6}a^{5}-\frac{1}{2}a$, $\frac{1}{6}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{12}a^{7}-\frac{1}{12}a^{6}-\frac{1}{12}a^{5}-\frac{1}{12}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{36}a^{8}-\frac{1}{4}$, $\frac{1}{36}a^{9}-\frac{1}{4}a$, $\frac{1}{72}a^{10}-\frac{1}{72}a^{8}-\frac{1}{12}a^{6}-\frac{1}{12}a^{4}-\frac{3}{8}a^{2}-\frac{1}{8}$, $\frac{1}{72}a^{11}-\frac{1}{72}a^{9}-\frac{1}{12}a^{6}-\frac{1}{12}a^{4}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}+\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{216}a^{12}-\frac{1}{72}a^{8}-\frac{1}{24}a^{4}+\frac{1}{8}$, $\frac{1}{432}a^{13}-\frac{1}{432}a^{12}-\frac{1}{144}a^{9}+\frac{1}{144}a^{8}+\frac{1}{16}a^{5}-\frac{1}{16}a^{4}+\frac{5}{16}a-\frac{5}{16}$, $\frac{1}{17712}a^{14}+\frac{13}{17712}a^{12}-\frac{29}{5904}a^{10}+\frac{7}{656}a^{8}+\frac{131}{1968}a^{6}-\frac{161}{1968}a^{4}-\frac{47}{656}a^{2}-\frac{35}{656}$, $\frac{1}{123984}a^{15}+\frac{95}{123984}a^{13}+\frac{31}{5904}a^{11}+\frac{1}{656}a^{9}+\frac{131}{13776}a^{7}-\frac{1}{12}a^{6}+\frac{1069}{13776}a^{5}-\frac{1}{12}a^{4}+\frac{363}{4592}a^{3}-\frac{1}{4}a^{2}-\frac{691}{4592}a-\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{347}{5904}a^{14}-\frac{22547}{17712}a^{12}+\frac{69851}{5904}a^{10}-\frac{361145}{5904}a^{8}+\frac{80225}{656}a^{6}-\frac{69971}{656}a^{4}+\frac{87849}{656}a^{2}-\frac{65299}{656}$, $\frac{4}{27}a^{14}+\frac{173}{54}a^{12}-\frac{535}{18}a^{10}+\frac{5521}{36}a^{8}-\frac{914}{3}a^{6}+\frac{799}{3}a^{4}-\frac{681}{2}a^{2}+\frac{985}{4}$, $\frac{19}{6888}a^{15}-\frac{73}{8856}a^{14}+\frac{3845}{61992}a^{13}+\frac{194}{1107}a^{12}-\frac{1775}{2952}a^{11}-\frac{521}{328}a^{10}+\frac{9613}{2952}a^{9}+\frac{5851}{738}a^{8}-\frac{51101}{6888}a^{7}-\frac{13663}{984}a^{6}+\frac{41635}{6888}a^{5}+\frac{1136}{123}a^{4}-\frac{5247}{2296}a^{3}-\frac{5671}{328}a^{2}+\frac{4509}{2296}a+\frac{1223}{82}$, $\frac{6113}{123984}a^{15}+\frac{259}{4428}a^{14}-\frac{132173}{123984}a^{13}-\frac{11183}{8856}a^{12}+\frac{58385}{5904}a^{11}+\frac{1917}{164}a^{10}-\frac{301273}{5904}a^{9}-\frac{177491}{2952}a^{8}+\frac{465921}{4592}a^{7}+\frac{19373}{164}a^{6}-\frac{412005}{4592}a^{5}-\frac{99593}{984}a^{4}+\frac{537773}{4592}a^{3}+\frac{21857}{164}a^{2}-\frac{396077}{4592}a-\frac{32357}{328}$, $\frac{6113}{123984}a^{15}+\frac{259}{4428}a^{14}+\frac{132173}{123984}a^{13}-\frac{11183}{8856}a^{12}-\frac{58385}{5904}a^{11}+\frac{1917}{164}a^{10}+\frac{301273}{5904}a^{9}-\frac{177491}{2952}a^{8}-\frac{465921}{4592}a^{7}+\frac{19373}{164}a^{6}+\frac{412005}{4592}a^{5}-\frac{99593}{984}a^{4}-\frac{537773}{4592}a^{3}+\frac{21857}{164}a^{2}+\frac{396077}{4592}a-\frac{32357}{328}$, $\frac{1241}{10332}a^{15}-\frac{3793}{8856}a^{14}-\frac{40273}{15498}a^{13}+\frac{82055}{8856}a^{12}+\frac{71213}{2952}a^{11}-\frac{42313}{492}a^{10}-\frac{122597}{984}a^{9}+\frac{163850}{369}a^{8}+\frac{71280}{287}a^{7}-\frac{289967}{328}a^{6}-\frac{251297}{1148}a^{5}+\frac{762455}{984}a^{4}+\frac{638507}{2296}a^{3}-\frac{40359}{41}a^{2}-\frac{463929}{2296}a+\frac{117607}{164}$, $\frac{1241}{10332}a^{15}-\frac{3793}{8856}a^{14}+\frac{40273}{15498}a^{13}+\frac{82055}{8856}a^{12}-\frac{71213}{2952}a^{11}-\frac{42313}{492}a^{10}+\frac{122597}{984}a^{9}+\frac{163850}{369}a^{8}-\frac{71280}{287}a^{7}-\frac{289967}{328}a^{6}+\frac{251297}{1148}a^{5}+\frac{762455}{984}a^{4}-\frac{638507}{2296}a^{3}-\frac{40359}{41}a^{2}+\frac{463929}{2296}a+\frac{117607}{164}$, $\frac{17441}{123984}a^{15}+\frac{4835}{17712}a^{14}+\frac{41929}{13776}a^{13}-\frac{11621}{1968}a^{12}-\frac{18537}{656}a^{11}+\frac{35953}{656}a^{10}+\frac{287239}{1968}a^{9}-\frac{1670611}{5904}a^{8}-\frac{4009067}{13776}a^{7}+\frac{1108657}{1968}a^{6}+\frac{3530339}{13776}a^{5}-\frac{973103}{1968}a^{4}-\frac{1492837}{4592}a^{3}+\frac{412683}{656}a^{2}+\frac{1086609}{4592}a-\frac{300425}{656}$, $\frac{2699}{17712}a^{14}+\frac{58393}{17712}a^{12}-\frac{180685}{5904}a^{10}+\frac{311009}{1968}a^{8}-\frac{619577}{1968}a^{6}+\frac{181473}{656}a^{4}-\frac{231815}{656}a^{2}+\frac{168921}{656}$, $\frac{30787}{123984}a^{15}-\frac{745}{2214}a^{14}-\frac{666179}{123984}a^{13}+\frac{64457}{8856}a^{12}+\frac{32727}{656}a^{11}-\frac{199391}{2952}a^{10}-\frac{169047}{656}a^{9}+\frac{57179}{164}a^{8}+\frac{7078741}{13776}a^{7}-\frac{28436}{41}a^{6}-\frac{6222869}{13776}a^{5}+\frac{597655}{984}a^{4}+\frac{2625951}{4592}a^{3}-\frac{253581}{328}a^{2}-\frac{1912223}{4592}a+\frac{92453}{164}$, $\frac{5603}{30996}a^{15}-\frac{5041}{17712}a^{14}-\frac{40309}{10332}a^{13}+\frac{108881}{17712}a^{12}+\frac{35531}{984}a^{11}-\frac{336217}{5904}a^{10}-\frac{548381}{2952}a^{9}+\frac{577199}{1968}a^{8}+\frac{629171}{1722}a^{7}-\frac{379805}{656}a^{6}-\frac{272599}{861}a^{5}+\frac{329765}{656}a^{4}+\frac{944931}{2296}a^{3}-\frac{426207}{656}a^{2}-\frac{655307}{2296}a+\frac{301731}{656}$
|
| |
Regulator: | \( 47518730.249473095 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 47518730.249473095 \cdot 1}{2\cdot\sqrt{156853697876420445125738496}}\cr\approx \mathstrut & 0.756914612473632 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3:\OD_{16}$ (as 16T252):
A solvable group of order 128 |
The 32 conjugacy class representatives for $C_2^3:\OD_{16}$ |
Character table for $C_2^3:\OD_{16}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.4.18432.1, 8.8.1565515579392.1, 8.4.1565515579392.4, 8.4.21743271936.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{6}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.68h1.1670 | $x^{16} + 16 x^{15} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{5} + 24 x^{4} + 18$ | $16$ | $1$ | $68$ | 16T252 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
\(3\)
| 3.4.4.12a1.1 | $x^{16} + 8 x^{15} + 24 x^{14} + 32 x^{13} + 24 x^{12} + 48 x^{11} + 96 x^{10} + 64 x^{9} + 24 x^{8} + 96 x^{7} + 96 x^{6} + 32 x^{4} + 64 x^{3} + 3 x^{2} + 16$ | $4$ | $4$ | $12$ | $C_8: C_2$ | $$[\ ]_{4}^{4}$$ |