Normalized defining polynomial
\( x^{16} - 92 x^{12} - 192 x^{11} - 288 x^{10} + 96 x^{9} + 1710 x^{8} + 288 x^{7} - 2496 x^{6} + \cdots + 49 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(156853697876420445125738496\)
\(\medspace = 2^{68}\cdot 3^{12}\)
|
| |
Root discriminant: | \(43.37\) |
| |
Galois root discriminant: | $2^{141/32}3^{3/4}\approx 48.33418048348305$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{28}a^{12}+\frac{1}{28}a^{11}-\frac{1}{4}a^{10}-\frac{5}{28}a^{9}+\frac{1}{7}a^{8}+\frac{3}{14}a^{7}-\frac{5}{14}a^{5}+\frac{3}{28}a^{4}-\frac{1}{4}a^{3}-\frac{9}{28}a^{2}-\frac{1}{28}a$, $\frac{1}{28}a^{13}-\frac{1}{28}a^{11}-\frac{5}{28}a^{10}+\frac{1}{14}a^{9}-\frac{5}{28}a^{8}-\frac{3}{14}a^{7}+\frac{1}{7}a^{6}+\frac{13}{28}a^{5}+\frac{1}{7}a^{4}-\frac{9}{28}a^{3}+\frac{1}{28}a^{2}+\frac{2}{7}a-\frac{1}{4}$, $\frac{1}{28}a^{14}+\frac{3}{28}a^{11}+\frac{1}{14}a^{10}-\frac{3}{28}a^{9}+\frac{5}{28}a^{8}-\frac{1}{7}a^{7}-\frac{1}{28}a^{6}+\frac{2}{7}a^{5}+\frac{2}{7}a^{4}+\frac{1}{28}a^{3}+\frac{3}{14}a^{2}-\frac{1}{28}a+\frac{1}{4}$, $\frac{1}{17038799531684}a^{15}-\frac{297880035431}{17038799531684}a^{14}-\frac{84340791683}{8519399765842}a^{13}-\frac{287501947315}{17038799531684}a^{12}-\frac{708386998989}{17038799531684}a^{11}-\frac{2128045336723}{17038799531684}a^{10}-\frac{1281346484767}{8519399765842}a^{9}-\frac{2167589639861}{17038799531684}a^{8}-\frac{1883271540691}{17038799531684}a^{7}-\frac{2292199250041}{17038799531684}a^{6}+\frac{1995569464388}{4259699882921}a^{5}+\frac{762540665333}{2434114218812}a^{4}-\frac{711085119349}{17038799531684}a^{3}+\frac{3126584600999}{17038799531684}a^{2}+\frac{931177270237}{4259699882921}a+\frac{85000721923}{2434114218812}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{808333485391}{4259699882921}a^{15}-\frac{768419329800}{4259699882921}a^{14}-\frac{711378016779}{4259699882921}a^{13}-\frac{652766343426}{4259699882921}a^{12}+\frac{73762183054047}{4259699882921}a^{11}+\frac{225343007175786}{4259699882921}a^{10}+\frac{445259447491039}{4259699882921}a^{9}+\frac{679781907989637}{8519399765842}a^{8}-\frac{152953698711063}{608528554703}a^{7}-\frac{180083857631892}{608528554703}a^{6}+\frac{844791407573283}{4259699882921}a^{5}+\frac{10\cdots 87}{4259699882921}a^{4}-\frac{280601307090383}{4259699882921}a^{3}-\frac{378993787751742}{4259699882921}a^{2}+\frac{3923011020327}{608528554703}a+\frac{13839422333701}{1217057109406}$, $\frac{753979441865}{1217057109406}a^{15}+\frac{8119078929537}{17038799531684}a^{14}+\frac{3564354082027}{8519399765842}a^{13}+\frac{211220912272}{608528554703}a^{12}-\frac{241450784374286}{4259699882921}a^{11}-\frac{27\cdots 51}{17038799531684}a^{10}-\frac{13\cdots 45}{4259699882921}a^{9}-\frac{808558427624420}{4259699882921}a^{8}+\frac{10\cdots 99}{1217057109406}a^{7}+\frac{14\cdots 23}{17038799531684}a^{6}-\frac{70\cdots 03}{8519399765842}a^{5}-\frac{32\cdots 34}{4259699882921}a^{4}+\frac{202914837385498}{608528554703}a^{3}+\frac{48\cdots 95}{17038799531684}a^{2}-\frac{235446436875575}{4259699882921}a-\frac{21531088749940}{608528554703}$, $\frac{768419329800}{4259699882921}a^{15}+\frac{711378016779}{4259699882921}a^{14}+\frac{652766343426}{4259699882921}a^{13}+\frac{86356800275}{608528554703}a^{12}-\frac{70142977980714}{4259699882921}a^{11}-\frac{212459403698431}{4259699882921}a^{10}-\frac{834981937184709}{8519399765842}a^{9}-\frac{311574369041169}{4259699882921}a^{8}+\frac{10\cdots 36}{4259699882921}a^{7}+\frac{11\cdots 53}{4259699882921}a^{6}-\frac{840012268175979}{4259699882921}a^{5}-\frac{10\cdots 25}{4259699882921}a^{4}+\frac{301393773154206}{4259699882921}a^{3}+\frac{360538995845391}{4259699882921}a^{2}-\frac{12622365224295}{1217057109406}a-\frac{6266862952440}{608528554703}$, $\frac{5396627373675}{8519399765842}a^{15}+\frac{655354809821}{1217057109406}a^{14}+\frac{3526648080101}{8519399765842}a^{13}+\frac{1545242470806}{4259699882921}a^{12}-\frac{70567118823533}{1217057109406}a^{11}-\frac{727967015947909}{4259699882921}a^{10}-\frac{13\cdots 57}{4259699882921}a^{9}-\frac{881419653070079}{4259699882921}a^{8}+\frac{78\cdots 13}{8519399765842}a^{7}+\frac{81\cdots 05}{8519399765842}a^{6}-\frac{71\cdots 35}{8519399765842}a^{5}-\frac{38\cdots 04}{4259699882921}a^{4}+\frac{28\cdots 55}{8519399765842}a^{3}+\frac{14\cdots 73}{4259699882921}a^{2}-\frac{230736628284058}{4259699882921}a-\frac{28571321922268}{608528554703}$, $\frac{2697394776927}{17038799531684}a^{15}-\frac{1343136584072}{4259699882921}a^{14}-\frac{1740686634885}{17038799531684}a^{13}-\frac{1467365109871}{8519399765842}a^{12}-\frac{250313889110833}{17038799531684}a^{11}-\frac{6459586984231}{4259699882921}a^{10}+\frac{412867566028563}{17038799531684}a^{9}+\frac{12\cdots 11}{8519399765842}a^{8}+\frac{53\cdots 71}{17038799531684}a^{7}-\frac{35\cdots 15}{8519399765842}a^{6}-\frac{10\cdots 69}{17038799531684}a^{5}+\frac{288777554985467}{608528554703}a^{4}+\frac{65\cdots 07}{17038799531684}a^{3}-\frac{289524117452933}{1217057109406}a^{2}-\frac{229312055887279}{2434114218812}a+\frac{31420883372336}{608528554703}$, $\frac{5930728718491}{17038799531684}a^{15}+\frac{82102464896}{608528554703}a^{14}-\frac{1104825432231}{17038799531684}a^{13}+\frac{161832423019}{8519399765842}a^{12}+\frac{545362621327021}{17038799531684}a^{11}+\frac{231802594160017}{4259699882921}a^{10}+\frac{13\cdots 93}{17038799531684}a^{9}-\frac{262266489897487}{4259699882921}a^{8}-\frac{96\cdots 35}{17038799531684}a^{7}+\frac{10\cdots 27}{8519399765842}a^{6}+\frac{13\cdots 01}{17038799531684}a^{5}-\frac{948630572929682}{4259699882921}a^{4}-\frac{76\cdots 39}{17038799531684}a^{3}+\frac{12\cdots 47}{8519399765842}a^{2}+\frac{245004099968587}{2434114218812}a-\frac{50219401520377}{1217057109406}$, $\frac{1849329342199}{17038799531684}a^{15}-\frac{636467978903}{4259699882921}a^{14}-\frac{2676774897291}{17038799531684}a^{13}-\frac{1324449780925}{8519399765842}a^{12}+\frac{23961466846759}{2434114218812}a^{11}+\frac{146708555408852}{4259699882921}a^{10}+\frac{12\cdots 09}{17038799531684}a^{9}+\frac{327635443784227}{4259699882921}a^{8}-\frac{19\cdots 63}{17038799531684}a^{7}-\frac{18\cdots 23}{8519399765842}a^{6}+\frac{390009372721697}{17038799531684}a^{5}+\frac{659541761734334}{4259699882921}a^{4}+\frac{462324171854309}{17038799531684}a^{3}-\frac{346388972661695}{8519399765842}a^{2}-\frac{30939263457077}{2434114218812}a+\frac{998374796767}{1217057109406}$, $\frac{10417514983360}{4259699882921}a^{15}+\frac{1360350392553}{608528554703}a^{14}+\frac{17418943387519}{8519399765842}a^{13}+\frac{31658328512553}{17038799531684}a^{12}-\frac{19\cdots 33}{8519399765842}a^{11}-\frac{28\cdots 90}{4259699882921}a^{10}-\frac{11\cdots 81}{8519399765842}a^{9}-\frac{16\cdots 61}{17038799531684}a^{8}+\frac{28\cdots 57}{8519399765842}a^{7}+\frac{31\cdots 79}{8519399765842}a^{6}-\frac{11\cdots 09}{4259699882921}a^{5}-\frac{54\cdots 83}{17038799531684}a^{4}+\frac{41\cdots 47}{4259699882921}a^{3}+\frac{13\cdots 69}{1217057109406}a^{2}-\frac{620622418941177}{4259699882921}a-\frac{324689489410859}{2434114218812}$, $\frac{7761657268101}{17038799531684}a^{15}+\frac{10980826530815}{17038799531684}a^{14}+\frac{6023129731379}{17038799531684}a^{13}+\frac{3545246892683}{8519399765842}a^{12}-\frac{709043179858733}{17038799531684}a^{11}-\frac{24\cdots 95}{17038799531684}a^{10}-\frac{48\cdots 65}{17038799531684}a^{9}-\frac{10\cdots 49}{4259699882921}a^{8}+\frac{15\cdots 11}{2434114218812}a^{7}+\frac{25\cdots 89}{2434114218812}a^{6}-\frac{79\cdots 01}{17038799531684}a^{5}-\frac{44\cdots 31}{4259699882921}a^{4}+\frac{31\cdots 75}{17038799531684}a^{3}+\frac{68\cdots 17}{17038799531684}a^{2}-\frac{650162507893873}{17038799531684}a-\frac{59723017963615}{1217057109406}$, $\frac{6148310969365}{8519399765842}a^{15}+\frac{9573918537219}{17038799531684}a^{14}+\frac{629030352601}{1217057109406}a^{13}+\frac{7642124064941}{17038799531684}a^{12}-\frac{281165031076660}{4259699882921}a^{11}-\frac{462255444317891}{2434114218812}a^{10}-\frac{15\cdots 30}{4259699882921}a^{9}-\frac{566593432563869}{2434114218812}a^{8}+\frac{12\cdots 69}{1217057109406}a^{7}+\frac{16\cdots 93}{17038799531684}a^{6}-\frac{78\cdots 87}{8519399765842}a^{5}-\frac{14\cdots 93}{17038799531684}a^{4}+\frac{15\cdots 00}{4259699882921}a^{3}+\frac{49\cdots 61}{17038799531684}a^{2}-\frac{237163349174908}{4259699882921}a-\frac{78630207502803}{2434114218812}$, $\frac{7185644063943}{4259699882921}a^{15}-\frac{5718671649317}{4259699882921}a^{14}-\frac{730888340449}{608528554703}a^{13}-\frac{17945316023385}{17038799531684}a^{12}+\frac{93851861995435}{608528554703}a^{11}+\frac{19\cdots 30}{4259699882921}a^{10}+\frac{36\cdots 93}{4259699882921}a^{9}+\frac{93\cdots 59}{17038799531684}a^{8}-\frac{20\cdots 09}{8519399765842}a^{7}-\frac{99\cdots 89}{4259699882921}a^{6}+\frac{18\cdots 49}{8519399765842}a^{5}+\frac{50\cdots 95}{2434114218812}a^{4}-\frac{76\cdots 07}{8519399765842}a^{3}-\frac{32\cdots 52}{4259699882921}a^{2}+\frac{12\cdots 69}{8519399765842}a+\frac{224302086249311}{2434114218812}$
|
| |
Regulator: | \( 45933246.44539841 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 45933246.44539841 \cdot 1}{2\cdot\sqrt{156853697876420445125738496}}\cr\approx \mathstrut & 0.731659816041909 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3:\OD_{16}$ (as 16T252):
A solvable group of order 128 |
The 32 conjugacy class representatives for $C_2^3:\OD_{16}$ |
Character table for $C_2^3:\OD_{16}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 4.4.18432.1, 8.8.1565515579392.1, 8.4.1565515579392.6, 8.4.21743271936.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{6}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.68h1.1654 | $x^{16} + 16 x^{15} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{5} + 8 x^{4} + 18$ | $16$ | $1$ | $68$ | 16T252 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$$ |
\(3\)
| 3.2.4.6a1.1 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 16$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $$[\ ]_{4}^{4}$$ |
3.2.4.6a1.1 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 16$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $$[\ ]_{4}^{4}$$ |