Normalized defining polynomial
\( x^{16} - 16x^{14} + 122x^{12} - 868x^{10} + 3915x^{8} - 5572x^{6} + 2042x^{4} - 2924x^{2} + 1681 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(54660589158400000000000000\)
\(\medspace = 2^{36}\cdot 5^{14}\cdot 19^{4}\)
|
| |
Root discriminant: | \(40.61\) |
| |
Galois root discriminant: | $2^{43/16}5^{7/8}19^{1/2}\approx 114.81368805634027$ | ||
Ramified primes: |
\(2\), \(5\), \(19\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2^2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{44}a^{12}+\frac{7}{44}a^{10}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{3}{11}a^{4}-\frac{1}{2}a^{3}+\frac{15}{44}a^{2}-\frac{1}{2}a-\frac{3}{44}$, $\frac{1}{44}a^{13}+\frac{7}{44}a^{11}-\frac{1}{4}a^{7}+\frac{5}{22}a^{5}-\frac{1}{2}a^{4}-\frac{7}{44}a^{3}-\frac{1}{2}a^{2}+\frac{19}{44}a-\frac{1}{2}$, $\frac{1}{963963075724}a^{14}+\frac{8613982647}{963963075724}a^{12}+\frac{36537633837}{240990768931}a^{10}-\frac{3224379539}{87633006884}a^{8}+\frac{111125144861}{481981537862}a^{6}-\frac{1}{2}a^{5}-\frac{251823021841}{963963075724}a^{4}-\frac{1}{2}a^{3}-\frac{52314280861}{963963075724}a^{2}-\frac{1}{2}a+\frac{37332405051}{481981537862}$, $\frac{1}{39522486104684}a^{15}-\frac{35066777121}{3592953282244}a^{13}-\frac{1015058448771}{9880621526171}a^{11}+\frac{522573661765}{3592953282244}a^{9}+\frac{417048725827}{9880621526171}a^{7}+\frac{56773367909}{3592953282244}a^{5}+\frac{17649553109707}{39522486104684}a^{3}-\frac{9251766324653}{19761243052342}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{9439688}{21908251721}a^{14}-\frac{150962762}{21908251721}a^{12}+\frac{1143570372}{21908251721}a^{10}-\frac{8075092131}{21908251721}a^{8}+\frac{36128249588}{21908251721}a^{6}-\frac{47302517150}{21908251721}a^{4}-\frac{4916418844}{21908251721}a^{2}-\frac{1182831482}{21908251721}$, $\frac{119653208}{240990768931}a^{14}-\frac{166490498}{21908251721}a^{12}+\frac{13250095982}{240990768931}a^{10}-\frac{17102475507}{43816503442}a^{8}+\frac{400396569778}{240990768931}a^{6}-\frac{68504760009}{43816503442}a^{4}+\frac{17202465321}{240990768931}a^{2}-\frac{768665406165}{481981537862}$, $\frac{1406393145}{39522486104684}a^{15}-\frac{9439688}{21908251721}a^{14}-\frac{2478380805}{9880621526171}a^{13}+\frac{150962762}{21908251721}a^{12}-\frac{15569597965}{39522486104684}a^{11}-\frac{1143570372}{21908251721}a^{10}+\frac{14331494729}{3592953282244}a^{9}+\frac{8075092131}{21908251721}a^{8}-\frac{4545389840621}{39522486104684}a^{7}-\frac{36128249588}{21908251721}a^{6}+\frac{34597604560647}{39522486104684}a^{5}+\frac{47302517150}{21908251721}a^{4}-\frac{2255015352481}{1796476641122}a^{3}+\frac{4916418844}{21908251721}a^{2}+\frac{41626617582315}{39522486104684}a+\frac{1182831482}{21908251721}$, $\frac{6142248539}{39522486104684}a^{15}-\frac{102364811053}{39522486104684}a^{13}+\frac{389759951419}{19761243052342}a^{11}-\frac{488241633297}{3592953282244}a^{9}+\frac{12248877114299}{19761243052342}a^{7}-\frac{27470971672739}{39522486104684}a^{5}-\frac{3713714925623}{3592953282244}a^{3}-\frac{5011944752513}{19761243052342}a+1$, $\frac{3265147201}{3592953282244}a^{15}-\frac{556272136539}{39522486104684}a^{13}+\frac{2060949138607}{19761243052342}a^{11}-\frac{2672484545747}{3592953282244}a^{9}+\frac{5815825368393}{1796476641122}a^{7}-\frac{151748297952693}{39522486104684}a^{5}+\frac{61501723957231}{39522486104684}a^{3}-\frac{70826470836003}{19761243052342}a-1$, $\frac{3265147201}{3592953282244}a^{15}-\frac{15816640}{240990768931}a^{14}-\frac{556272136539}{39522486104684}a^{13}+\frac{15527736}{21908251721}a^{12}+\frac{2060949138607}{19761243052342}a^{11}-\frac{670821890}{240990768931}a^{10}-\frac{2672484545747}{3592953282244}a^{9}+\frac{952291245}{43816503442}a^{8}+\frac{5815825368393}{1796476641122}a^{7}-\frac{2985824310}{240990768931}a^{6}-\frac{151748297952693}{39522486104684}a^{5}-\frac{26100274291}{43816503442}a^{4}+\frac{61501723957231}{39522486104684}a^{3}-\frac{71283072605}{240990768931}a^{2}-\frac{70826470836003}{19761243052342}a+\frac{1224624651423}{481981537862}$, $\frac{6142248539}{39522486104684}a^{15}+\frac{15816640}{240990768931}a^{14}-\frac{102364811053}{39522486104684}a^{13}-\frac{15527736}{21908251721}a^{12}+\frac{389759951419}{19761243052342}a^{11}+\frac{670821890}{240990768931}a^{10}-\frac{488241633297}{3592953282244}a^{9}-\frac{952291245}{43816503442}a^{8}+\frac{12248877114299}{19761243052342}a^{7}+\frac{2985824310}{240990768931}a^{6}-\frac{27470971672739}{39522486104684}a^{5}+\frac{26100274291}{43816503442}a^{4}-\frac{3713714925623}{3592953282244}a^{3}+\frac{71283072605}{240990768931}a^{2}-\frac{5011944752513}{19761243052342}a-\frac{260661575699}{481981537862}$, $\frac{328473028}{898238320561}a^{15}+\frac{37144647}{240990768931}a^{14}-\frac{101388285469}{19761243052342}a^{13}-\frac{1271230693}{481981537862}a^{12}+\frac{339427860097}{9880621526171}a^{11}+\frac{5880587579}{240990768931}a^{10}-\frac{220434909810}{898238320561}a^{9}-\frac{7918316189}{43816503442}a^{8}+\frac{824881086423}{898238320561}a^{7}+\frac{438929927621}{481981537862}a^{6}-\frac{1015564743283}{19761243052342}a^{5}-\frac{1350783988657}{481981537862}a^{4}-\frac{8482385061329}{19761243052342}a^{3}+\frac{707256835933}{240990768931}a^{2}-\frac{29661641445538}{9880621526171}a+\frac{75698528991}{481981537862}$, $\frac{28452391501}{9880621526171}a^{15}+\frac{14159532}{21908251721}a^{14}-\frac{441834175385}{9880621526171}a^{13}-\frac{226444143}{21908251721}a^{12}+\frac{3261756274882}{9880621526171}a^{11}+\frac{1715355558}{21908251721}a^{10}-\frac{4208846550457}{1796476641122}a^{9}-\frac{24225276393}{43816503442}a^{8}+\frac{200875028943181}{19761243052342}a^{7}+\frac{54192374382}{21908251721}a^{6}-\frac{110726903153341}{9880621526171}a^{5}-\frac{70953775725}{21908251721}a^{4}+\frac{10880889232165}{19761243052342}a^{3}+\frac{7158995189}{43816503442}a^{2}-\frac{175882467529661}{19761243052342}a-\frac{67499002386}{21908251721}$, $\frac{10863602181}{39522486104684}a^{15}-\frac{769610407}{963963075724}a^{14}-\frac{16819321837}{3592953282244}a^{13}+\frac{2983044798}{240990768931}a^{12}+\frac{361419616909}{9880621526171}a^{11}-\frac{86402133635}{963963075724}a^{10}-\frac{926749963389}{3592953282244}a^{9}+\frac{56226580939}{87633006884}a^{8}+\frac{24076001678557}{19761243052342}a^{7}-\frac{2653464276205}{963963075724}a^{6}-\frac{6812497552973}{3592953282244}a^{5}+\frac{2607771764335}{963963075724}a^{4}+\frac{6066305150043}{39522486104684}a^{3}-\frac{610924001607}{481981537862}a^{2}-\frac{27889729635423}{19761243052342}a+\frac{1577013247785}{963963075724}$, $\frac{655251663201}{39522486104684}a^{15}+\frac{12285206635}{963963075724}a^{14}-\frac{2523603658291}{9880621526171}a^{13}-\frac{188559199633}{963963075724}a^{12}+\frac{74015049997615}{39522486104684}a^{11}+\frac{689638451995}{481981537862}a^{10}-\frac{47787696847399}{3592953282244}a^{9}-\frac{891195589903}{87633006884}a^{8}+\frac{22\cdots 93}{39522486104684}a^{7}+\frac{20978609066251}{481981537862}a^{6}-\frac{23\cdots 11}{39522486104684}a^{5}-\frac{42987056436531}{963963075724}a^{4}+\frac{17070896034888}{9880621526171}a^{3}+\frac{2138462287961}{963963075724}a^{2}-\frac{18\cdots 41}{39522486104684}a-\frac{17358153185743}{481981537862}$
|
| |
Regulator: | \( 5126884.12499 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 5126884.12499 \cdot 2}{2\cdot\sqrt{54660589158400000000000000}}\cr\approx \mathstrut & 0.276678738201 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3:\OD_{16}$ (as 16T252):
A solvable group of order 128 |
The 32 conjugacy class representatives for $C_2^3:\OD_{16}$ |
Character table for $C_2^3:\OD_{16}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.4.115520000000.2, 8.8.5120000000.1, 8.4.369664000000.12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.54660589158400000000000000.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.36b15.29 | $x^{16} + 8 x^{15} + 38 x^{14} + 128 x^{13} + 336 x^{12} + 712 x^{11} + 1254 x^{10} + 1860 x^{9} + 2351 x^{8} + 2540 x^{7} + 2346 x^{6} + 1836 x^{5} + 1198 x^{4} + 632 x^{3} + 260 x^{2} + 80 x + 17$ | $8$ | $2$ | $36$ | 16T252 | $$[2, 2, 2, 3, 3]^{4}$$ |
\(5\)
| 5.2.8.14a1.3 | $x^{16} + 32 x^{15} + 464 x^{14} + 4032 x^{13} + 23408 x^{12} + 95872 x^{11} + 285376 x^{10} + 627456 x^{9} + 1027168 x^{8} + 1254912 x^{7} + 1141504 x^{6} + 766976 x^{5} + 374528 x^{4} + 129024 x^{3} + 29696 x^{2} + 4096 x + 261$ | $8$ | $2$ | $14$ | $C_8: C_2$ | $$[\ ]_{8}^{2}$$ |
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
19.1.2.1a1.2 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
19.1.2.1a1.2 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |