/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 16*x^14 + 122*x^12 - 868*x^10 + 3915*x^8 - 5572*x^6 + 2042*x^4 - 2924*x^2 + 1681, 16, 252, [8, 4], 54660589158400000000000000, [2, 5, 19], [1, a, a^2, a^3, a^4, a^5, 1/2*a^6 - 1/2*a^5 - 1/2*a^3 - 1/2*a - 1/2, 1/2*a^7 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2 - 1/2, 1/2*a^8 - 1/2*a^4 - 1/2, 1/2*a^9 - 1/2*a^5 - 1/2*a, 1/2*a^10 - 1/2*a^5 - 1/2*a^3 - 1/2*a^2 - 1/2*a - 1/2, 1/2*a^11 - 1/2*a^5 - 1/2*a^4 - 1/2*a^2 - 1/2, 1/44*a^12 + 7/44*a^10 - 1/4*a^6 - 1/2*a^5 - 3/11*a^4 - 1/2*a^3 + 15/44*a^2 - 1/2*a - 3/44, 1/44*a^13 + 7/44*a^11 - 1/4*a^7 + 5/22*a^5 - 1/2*a^4 - 7/44*a^3 - 1/2*a^2 + 19/44*a - 1/2, 1/963963075724*a^14 + 8613982647/963963075724*a^12 + 36537633837/240990768931*a^10 - 3224379539/87633006884*a^8 + 111125144861/481981537862*a^6 - 1/2*a^5 - 251823021841/963963075724*a^4 - 1/2*a^3 - 52314280861/963963075724*a^2 - 1/2*a + 37332405051/481981537862, 1/39522486104684*a^15 - 35066777121/3592953282244*a^13 - 1015058448771/9880621526171*a^11 + 522573661765/3592953282244*a^9 + 417048725827/9880621526171*a^7 + 56773367909/3592953282244*a^5 + 17649553109707/39522486104684*a^3 - 9251766324653/19761243052342*a], 0, 2, [2], 1, [ (9439688)/(21908251721)*a^(14) - (150962762)/(21908251721)*a^(12) + (1143570372)/(21908251721)*a^(10) - (8075092131)/(21908251721)*a^(8) + (36128249588)/(21908251721)*a^(6) - (47302517150)/(21908251721)*a^(4) - (4916418844)/(21908251721)*a^(2) - (1182831482)/(21908251721) , (119653208)/(240990768931)*a^(14) - (166490498)/(21908251721)*a^(12) + (13250095982)/(240990768931)*a^(10) - (17102475507)/(43816503442)*a^(8) + (400396569778)/(240990768931)*a^(6) - (68504760009)/(43816503442)*a^(4) + (17202465321)/(240990768931)*a^(2) - (768665406165)/(481981537862) , (1406393145)/(39522486104684)*a^(15) - (9439688)/(21908251721)*a^(14) - (2478380805)/(9880621526171)*a^(13) + (150962762)/(21908251721)*a^(12) - (15569597965)/(39522486104684)*a^(11) - (1143570372)/(21908251721)*a^(10) + (14331494729)/(3592953282244)*a^(9) + (8075092131)/(21908251721)*a^(8) - (4545389840621)/(39522486104684)*a^(7) - (36128249588)/(21908251721)*a^(6) + (34597604560647)/(39522486104684)*a^(5) + (47302517150)/(21908251721)*a^(4) - (2255015352481)/(1796476641122)*a^(3) + (4916418844)/(21908251721)*a^(2) + (41626617582315)/(39522486104684)*a + (1182831482)/(21908251721) , (6142248539)/(39522486104684)*a^(15) - (102364811053)/(39522486104684)*a^(13) + (389759951419)/(19761243052342)*a^(11) - (488241633297)/(3592953282244)*a^(9) + (12248877114299)/(19761243052342)*a^(7) - (27470971672739)/(39522486104684)*a^(5) - (3713714925623)/(3592953282244)*a^(3) - (5011944752513)/(19761243052342)*a + 1 , (3265147201)/(3592953282244)*a^(15) - (556272136539)/(39522486104684)*a^(13) + (2060949138607)/(19761243052342)*a^(11) - (2672484545747)/(3592953282244)*a^(9) + (5815825368393)/(1796476641122)*a^(7) - (151748297952693)/(39522486104684)*a^(5) + (61501723957231)/(39522486104684)*a^(3) - (70826470836003)/(19761243052342)*a - 1 , (3265147201)/(3592953282244)*a^(15) - (15816640)/(240990768931)*a^(14) - (556272136539)/(39522486104684)*a^(13) + (15527736)/(21908251721)*a^(12) + (2060949138607)/(19761243052342)*a^(11) - (670821890)/(240990768931)*a^(10) - (2672484545747)/(3592953282244)*a^(9) + (952291245)/(43816503442)*a^(8) + (5815825368393)/(1796476641122)*a^(7) - (2985824310)/(240990768931)*a^(6) - (151748297952693)/(39522486104684)*a^(5) - (26100274291)/(43816503442)*a^(4) + (61501723957231)/(39522486104684)*a^(3) - (71283072605)/(240990768931)*a^(2) - (70826470836003)/(19761243052342)*a + (1224624651423)/(481981537862) , (6142248539)/(39522486104684)*a^(15) + (15816640)/(240990768931)*a^(14) - (102364811053)/(39522486104684)*a^(13) - (15527736)/(21908251721)*a^(12) + (389759951419)/(19761243052342)*a^(11) + (670821890)/(240990768931)*a^(10) - (488241633297)/(3592953282244)*a^(9) - (952291245)/(43816503442)*a^(8) + (12248877114299)/(19761243052342)*a^(7) + (2985824310)/(240990768931)*a^(6) - (27470971672739)/(39522486104684)*a^(5) + (26100274291)/(43816503442)*a^(4) - (3713714925623)/(3592953282244)*a^(3) + (71283072605)/(240990768931)*a^(2) - (5011944752513)/(19761243052342)*a - (260661575699)/(481981537862) , (328473028)/(898238320561)*a^(15) + (37144647)/(240990768931)*a^(14) - (101388285469)/(19761243052342)*a^(13) - (1271230693)/(481981537862)*a^(12) + (339427860097)/(9880621526171)*a^(11) + (5880587579)/(240990768931)*a^(10) - (220434909810)/(898238320561)*a^(9) - (7918316189)/(43816503442)*a^(8) + (824881086423)/(898238320561)*a^(7) + (438929927621)/(481981537862)*a^(6) - (1015564743283)/(19761243052342)*a^(5) - (1350783988657)/(481981537862)*a^(4) - (8482385061329)/(19761243052342)*a^(3) + (707256835933)/(240990768931)*a^(2) - (29661641445538)/(9880621526171)*a + (75698528991)/(481981537862) , (28452391501)/(9880621526171)*a^(15) + (14159532)/(21908251721)*a^(14) - (441834175385)/(9880621526171)*a^(13) - (226444143)/(21908251721)*a^(12) + (3261756274882)/(9880621526171)*a^(11) + (1715355558)/(21908251721)*a^(10) - (4208846550457)/(1796476641122)*a^(9) - (24225276393)/(43816503442)*a^(8) + (200875028943181)/(19761243052342)*a^(7) + (54192374382)/(21908251721)*a^(6) - (110726903153341)/(9880621526171)*a^(5) - (70953775725)/(21908251721)*a^(4) + (10880889232165)/(19761243052342)*a^(3) + (7158995189)/(43816503442)*a^(2) - (175882467529661)/(19761243052342)*a - (67499002386)/(21908251721) , (10863602181)/(39522486104684)*a^(15) - (769610407)/(963963075724)*a^(14) - (16819321837)/(3592953282244)*a^(13) + (2983044798)/(240990768931)*a^(12) + (361419616909)/(9880621526171)*a^(11) - (86402133635)/(963963075724)*a^(10) - (926749963389)/(3592953282244)*a^(9) + (56226580939)/(87633006884)*a^(8) + (24076001678557)/(19761243052342)*a^(7) - (2653464276205)/(963963075724)*a^(6) - (6812497552973)/(3592953282244)*a^(5) + (2607771764335)/(963963075724)*a^(4) + (6066305150043)/(39522486104684)*a^(3) - (610924001607)/(481981537862)*a^(2) - (27889729635423)/(19761243052342)*a + (1577013247785)/(963963075724) , (655251663201)/(39522486104684)*a^(15) + (12285206635)/(963963075724)*a^(14) - (2523603658291)/(9880621526171)*a^(13) - (188559199633)/(963963075724)*a^(12) + (74015049997615)/(39522486104684)*a^(11) + (689638451995)/(481981537862)*a^(10) - (47787696847399)/(3592953282244)*a^(9) - (891195589903)/(87633006884)*a^(8) + (2258589185424393)/(39522486104684)*a^(7) + (20978609066251)/(481981537862)*a^(6) - (2351895986351611)/(39522486104684)*a^(5) - (42987056436531)/(963963075724)*a^(4) + (17070896034888)/(9880621526171)*a^(3) + (2138462287961)/(963963075724)*a^(2) - (1837457768919841)/(39522486104684)*a - (17358153185743)/(481981537862) ], 5126884.12499, [[x^2 - x - 1, 1], [x^4 - 5*x^2 + 5, 1], [x^8 - 2*x^7 - 2*x^6 + 36*x^5 - 140*x^4 + 316*x^3 - 412*x^2 + 168*x + 76, 1], [x^8 - 10*x^6 + 25*x^4 - 20*x^2 + 5, 1], [x^8 + 2*x^6 - 86*x^4 + 38*x^2 + 361, 1]]]