Learn more

Refine search


Results (1-50 of 82 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
16.12.462...893.2 $x^{16} - x^{15} - 28 x^{14} + 33 x^{13} + 161 x^{12} - 241 x^{11} + 1571 x^{10} - 571 x^{9} - 19434 x^{8} + 2938 x^{7} + 69212 x^{6} + 19695 x^{5} - 70317 x^{4} - 24700 x^{3} + 23231 x^{2} + 6656 x - 1807$ $13^{14}\cdot 53^{7}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $326609756.531$
16.4.462...893.4 $x^{16} - 2 x^{15} + 21 x^{14} - 63 x^{13} + 122 x^{12} - 443 x^{11} - 339 x^{10} - 1096 x^{9} - 6790 x^{8} + 1526 x^{7} - 16085 x^{6} + 30191 x^{5} + 55395 x^{4} + 86046 x^{3} + 79279 x^{2} - 99225 x + 25281$ $13^{14}\cdot 53^{7}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $58615528.7091$
16.8.462...893.5 $x^{16} - 2 x^{15} - 10 x^{14} + 40 x^{13} - 72 x^{12} - 100 x^{11} + 146 x^{10} + 157 x^{9} + 2831 x^{8} - 5821 x^{7} - 3730 x^{6} + 16904 x^{5} - 16284 x^{4} + 7614 x^{3} - 621 x^{2} - 1215 x + 243$ $13^{14}\cdot 53^{7}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $496798925.326$
16.8.462...893.6 $x^{16} - 8 x^{15} + 32 x^{14} - 71 x^{13} - 47 x^{12} + 776 x^{11} - 1995 x^{10} + 1449 x^{9} + 4175 x^{8} - 11008 x^{7} + 5491 x^{6} + 10757 x^{5} - 14515 x^{4} + 5212 x^{3} - 1371 x^{2} - 6210 x + 11313$ $13^{14}\cdot 53^{7}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $506003198.38$
16.12.880...125.1 $x^{16} - 7 x^{15} + 8 x^{14} + 70 x^{13} - 386 x^{12} + 1033 x^{11} - 802 x^{10} - 4317 x^{9} + 13210 x^{8} - 7878 x^{7} - 20015 x^{6} + 34942 x^{5} - 11808 x^{4} - 14140 x^{3} + 14135 x^{2} - 4530 x + 485$ $5^{7}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $2541302681.38$
16.4.880...125.1 $x^{16} + 27 x^{14} + 152 x^{12} - 568 x^{10} - 7334 x^{8} - 20665 x^{6} - 16975 x^{4} + 1250 x^{2} + 3125$ $5^{7}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $471748785.041$
16.8.880...125.1 $x^{16} - 8 x^{15} + 41 x^{14} - 147 x^{13} + 172 x^{12} + 515 x^{11} - 4031 x^{10} + 12884 x^{9} - 23672 x^{8} + 27339 x^{7} - 13520 x^{6} - 11165 x^{5} + 24519 x^{4} - 19206 x^{3} + 7105 x^{2} - 827 x - 65$ $5^{7}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $1075782663.14$
16.8.880...125.2 $x^{16} - 6 x^{14} - 241 x^{12} + 753 x^{10} + 15061 x^{8} + 1795 x^{6} - 21144 x^{4} + 2955 x^{2} + 2645$ $5^{7}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $1269533998.19$
16.12.166...957.1 $x^{16} - 6 x^{15} - 15 x^{14} + 82 x^{13} + 24 x^{12} + 446 x^{11} + 1232 x^{10} - 13271 x^{9} - 17349 x^{8} + 78270 x^{7} + 108927 x^{6} - 134162 x^{5} - 262702 x^{4} - 89079 x^{3} + 28320 x^{2} + 17952 x + 2155$ $13^{7}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $3471821208.49$
16.8.166...957.1 $x^{16} - 19 x^{14} - 63 x^{12} + 2137 x^{10} - 3363 x^{8} - 13340 x^{6} - 3078 x^{4} + 767 x^{2} + 13$ $13^{7}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $1551965159.43$
16.4.166...957.2 $x^{16} + 27 x^{14} + 168 x^{12} - 246 x^{10} - 3104 x^{8} + 87 x^{6} + 13142 x^{4} + 2535 x^{2} + 13$ $13^{7}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $264316404.341$
16.8.166...957.2 $x^{16} - 8 x^{15} + 37 x^{14} - 119 x^{13} + 95 x^{12} + 613 x^{11} - 2905 x^{10} + 7023 x^{9} - 4259 x^{8} - 15213 x^{7} + 51601 x^{6} - 82089 x^{5} + 27957 x^{4} + 54135 x^{3} - 80992 x^{2} + 44123 x + 61241$ $13^{7}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $676689543.259$
16.0.135...608.1 $x^{16} + 90 x^{12} - 432 x^{10} + 6588 x^{8} - 20124 x^{6} + 42498 x^{4} - 20124 x^{2} + 14157$ $2^{52}\cdot 3^{14}\cdot 13^{7}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2, 6]$ $48760259.8475$
16.0.135...608.2 $x^{16} + 24 x^{14} + 318 x^{12} + 3240 x^{10} + 24084 x^{8} + 129708 x^{6} + 505638 x^{4} + 1268748 x^{2} + 2007837$ $2^{52}\cdot 3^{14}\cdot 13^{7}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2, 6]$ $51747484.1082$
16.0.135...608.5 $x^{16} - 36 x^{14} + 498 x^{12} - 3348 x^{10} + 11340 x^{8} - 22824 x^{6} + 118746 x^{4} - 679536 x^{2} + 1712997$ $2^{52}\cdot 3^{14}\cdot 13^{7}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2, 6]$ $67322948.95538653$
16.0.135...608.6 $x^{16} + 90 x^{12} + 432 x^{10} + 6588 x^{8} + 20124 x^{6} + 42498 x^{4} + 20124 x^{2} + 14157$ $2^{52}\cdot 3^{14}\cdot 13^{7}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2, 6]$ $61432209.45058955$
16.12.220...125.1 $x^{16} - 8 x^{15} - 31 x^{14} + 357 x^{13} - 50 x^{12} - 4705 x^{11} + 7858 x^{10} + 13301 x^{9} - 50682 x^{8} + 54865 x^{7} - 512 x^{6} - 65737 x^{5} + 57451 x^{4} - 2467 x^{3} - 23495 x^{2} + 13854 x + 355$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $16606472393.6$
16.12.220...125.2 $x^{16} - 8 x^{15} - 37 x^{14} + 399 x^{13} - 52 x^{12} - 5239 x^{11} + 7029 x^{10} + 23342 x^{9} - 52164 x^{8} - 7043 x^{7} + 105717 x^{6} - 117898 x^{5} + 47082 x^{4} + 9051 x^{3} - 11628 x^{2} + 1448 x + 799$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $9992779568.35$
16.4.220...125.2 $x^{16} - 2 x^{15} + 14 x^{14} - 65 x^{13} - 31 x^{12} + 746 x^{11} - 3045 x^{10} + 14369 x^{9} - 49926 x^{8} + 106960 x^{7} - 123600 x^{6} - 52550 x^{5} + 452450 x^{4} - 573125 x^{3} + 187875 x^{2} + 85625 x - 71875$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $1523466232.17$
16.8.220...125.2 $x^{16} - 8 x^{15} - 20 x^{14} + 240 x^{13} + 241 x^{12} - 3574 x^{11} - 959 x^{10} + 26998 x^{9} - 1222 x^{8} - 95950 x^{7} - 28732 x^{6} + 178596 x^{5} + 291979 x^{4} - 399631 x^{3} - 403174 x^{2} + 522397 x - 131617$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $4473864193.61$
16.12.220...125.3 $x^{16} - 3 x^{15} - 53 x^{14} + 169 x^{13} + 1000 x^{12} - 3381 x^{11} - 8974 x^{10} + 34464 x^{9} + 33515 x^{8} - 182052 x^{7} + 5285 x^{6} + 432617 x^{5} - 272891 x^{4} - 303894 x^{3} + 365262 x^{2} - 123525 x + 13135$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $24365198777.5$
16.8.220...125.3 $x^{16} - x^{15} - 14 x^{14} + 68 x^{13} + 9 x^{12} - 871 x^{11} + 336 x^{10} - 95 x^{9} - 12063 x^{8} - 38735 x^{7} - 113135 x^{6} + 48107 x^{5} + 753099 x^{4} + 1015225 x^{3} + 283901 x^{2} - 210170 x - 99787$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $1859498765.72$
16.8.220...125.4 $x^{16} - 8 x^{15} + x^{14} + 57 x^{13} + 113 x^{12} - 40 x^{11} - 1432 x^{10} - 543 x^{9} + 2294 x^{8} - 682 x^{7} - 234 x^{6} + 3073 x^{5} - 3074 x^{4} - 4287 x^{3} + 6343 x^{2} - 628 x - 829$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $1857575387.55$
16.8.220...125.5 $x^{16} - 4 x^{15} - 15 x^{14} - 34 x^{13} + 4 x^{12} + 837 x^{11} + 36 x^{10} + 373 x^{9} - 4622 x^{8} - 28969 x^{7} + 56857 x^{6} + 23999 x^{5} - 45316 x^{4} - 17379 x^{3} - 5762 x^{2} + 2080 x + 845$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $3153082968.7$
16.8.220...125.6 $x^{16} - x^{15} - 12 x^{14} + 14 x^{13} - 89 x^{12} + 152 x^{11} + 651 x^{10} + 332 x^{9} - 821 x^{8} - 6220 x^{7} + 557 x^{6} + 4897 x^{5} + 7321 x^{4} - 28007 x^{3} - 78580 x^{2} - 6439 x + 18769$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $2150910676.85$
16.4.220...125.7 $x^{16} - 2 x^{15} - 29 x^{14} + 123 x^{13} - 113 x^{12} - 387 x^{11} + 1408 x^{10} - 6062 x^{9} + 25329 x^{8} - 73262 x^{7} + 152714 x^{6} - 157610 x^{5} + 28870 x^{4} + 5600 x^{3} + 110095 x^{2} - 407225 x + 333775$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $1967123678.43$
16.8.220...125.7 $x^{16} - 8 x^{15} + 7 x^{14} + 91 x^{13} - 421 x^{12} + 979 x^{11} + 1915 x^{10} - 15427 x^{9} + 17094 x^{8} + 29521 x^{7} - 119991 x^{6} + 186811 x^{5} + 41593 x^{4} - 326751 x^{3} + 580251 x^{2} - 395665 x + 104723$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $1733804696.34$
16.4.220...125.9 $x^{16} - 7 x^{15} + 16 x^{14} + 26 x^{13} - 337 x^{12} + 891 x^{11} + 798 x^{10} - 6182 x^{9} - 4210 x^{8} + 50810 x^{7} - 109100 x^{6} + 308265 x^{5} - 647450 x^{4} - 402450 x^{3} + 3810000 x^{2} - 5480625 x + 2584375$ $5^{9}\cdot 101^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $1471148864.73$
16.8.129...437.1 $x^{16} - 6 x^{15} + 30 x^{14} - 31 x^{13} - 1298 x^{12} + 6348 x^{11} + 2175 x^{10} - 80933 x^{9} + 177443 x^{8} + 141351 x^{7} - 1205142 x^{6} + 1555064 x^{5} + 1461674 x^{4} - 5542140 x^{3} + 3034269 x^{2} + 4331907 x - 4521339$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $3329247181.35$
16.12.129...437.2 $x^{16} - 2 x^{15} - 42 x^{14} + 44 x^{13} + 364 x^{12} - 780 x^{11} + 3965 x^{10} + 35152 x^{9} + 8203 x^{8} - 415220 x^{7} - 1253499 x^{6} - 658983 x^{5} + 3016728 x^{4} + 5192975 x^{3} + 1712136 x^{2} - 1417752 x - 764451$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $31258460580.8$
16.4.129...437.2 $x^{16} - 5 x^{15} + 12 x^{14} - 95 x^{13} - 141 x^{12} + 4042 x^{11} - 17097 x^{10} + 39361 x^{9} - 43079 x^{8} - 52618 x^{7} + 358363 x^{6} - 645754 x^{5} + 159932 x^{4} + 1504553 x^{3} - 3891185 x^{2} + 4515488 x - 1402587$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2, 2]$ $1200224224.76$
16.8.129...437.3 $x^{16} - 3 x^{15} - 54 x^{14} - 22 x^{13} - 245 x^{12} + 938 x^{11} + 5336 x^{10} - 11361 x^{9} + 41813 x^{8} - 4015 x^{7} - 249849 x^{6} + 48831 x^{5} + 714915 x^{4} - 1080133 x^{3} - 664649 x^{2} + 3078055 x - 1095631$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $5484601702.78$
16.12.129...437.4 $x^{16} - 4 x^{15} + 3 x^{14} + 7 x^{13} - 333 x^{12} + 297 x^{11} + 3577 x^{10} + 3879 x^{9} - 15526 x^{8} - 48707 x^{7} + 15763 x^{6} + 93740 x^{5} - 14398 x^{4} - 65298 x^{3} + 15012 x^{2} + 14649 x - 4729$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $23441756827.2$
16.12.129...437.6 $x^{16} - 3 x^{15} - 36 x^{14} + 90 x^{13} - 169 x^{12} + 65 x^{11} + 12103 x^{10} + 7319 x^{9} - 129077 x^{8} - 201773 x^{7} + 473967 x^{6} + 1238809 x^{5} - 92287 x^{4} - 2276184 x^{3} - 1864795 x^{2} - 230376 x + 142533$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $35584919637.9$
16.4.129...437.6 $x^{16} - 2 x^{15} - 3 x^{14} - 21 x^{13} - 130 x^{12} + 858 x^{11} - 910 x^{10} + 6019 x^{9} - 32812 x^{8} + 81484 x^{7} - 194727 x^{6} + 499876 x^{5} - 855270 x^{4} + 480033 x^{3} - 90756 x^{2} + 41888 x - 17419$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2, 2]$ $1033997645.32$
16.8.129...437.6 $x^{16} - 5 x^{15} - 30 x^{14} + 300 x^{13} - 921 x^{12} + 1143 x^{11} + 731 x^{10} - 15721 x^{9} + 85284 x^{8} - 185949 x^{7} + 99615 x^{6} + 122160 x^{5} - 103514 x^{4} + 85413 x^{3} - 219522 x^{2} + 90305 x - 9591$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $6695226723.71$
16.4.129...437.7 $x^{16} - 3 x^{15} + 3 x^{14} - 40 x^{13} - 78 x^{12} - 1339 x^{11} + 6422 x^{10} + 6032 x^{9} - 59631 x^{8} + 91052 x^{7} + 223145 x^{6} - 14326 x^{5} - 81601 x^{4} + 2520218 x^{3} - 1811131 x^{2} + 160326 x + 69759$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2, 8]$ $671366372.545$
16.8.129...437.7 $x^{16} - 3 x^{15} - 49 x^{14} - 92 x^{13} + 247 x^{12} + 962 x^{11} + 806 x^{10} - 364 x^{9} + 4238 x^{8} - 5512 x^{7} - 41652 x^{6} - 494 x^{5} + 47242 x^{4} + 12570 x^{3} + 27537 x^{2} - 7647 x - 2131$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $3290737326.99$
16.8.129...437.8 $x^{16} - 6 x^{15} + 44 x^{14} - 189 x^{13} + 591 x^{12} - 1847 x^{11} + 2061 x^{10} - 3226 x^{9} - 7885 x^{8} + 46797 x^{7} + 14787 x^{6} - 40188 x^{5} - 128967 x^{4} + 61837 x^{3} + 101746 x^{2} - 45322 x + 4707$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $5362283435.78$
16.8.129...437.9 $x^{16} - 4 x^{15} - 12 x^{14} + 157 x^{13} - 1469 x^{12} + 4199 x^{11} - 7930 x^{10} + 20722 x^{9} + 42809 x^{8} - 197223 x^{7} + 687258 x^{6} - 1583452 x^{5} + 1442207 x^{4} - 3986863 x^{3} - 4319756 x^{2} + 11242052 x + 3839553$ $13^{14}\cdot 53^{9}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $4649617714.91$
16.12.281...733.1 $x^{16} - 4 x^{15} - 54 x^{14} + 157 x^{13} + 647 x^{12} - 1075 x^{11} - 1191 x^{10} - 4686 x^{9} - 12076 x^{8} + 53295 x^{7} + 49394 x^{6} - 124051 x^{5} - 56047 x^{4} + 95974 x^{3} + 16448 x^{2} - 32118 x - 7433$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $7726245627.19$
16.12.281...733.2 $x^{16} - 5 x^{15} - 62 x^{14} + 391 x^{13} + 609 x^{12} - 7094 x^{11} + 3680 x^{10} + 45103 x^{9} - 51290 x^{8} - 123029 x^{7} + 190099 x^{6} + 43772 x^{5} - 111083 x^{4} - 4107 x^{3} + 20812 x^{2} + 85 x - 1025$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $29807164748.8$
16.8.281...733.2 $x^{16} - 6 x^{15} + 18 x^{14} + 79 x^{13} - 646 x^{12} + 967 x^{11} + 2798 x^{10} - 12519 x^{9} - 15678 x^{8} + 72699 x^{7} + 134402 x^{6} - 296532 x^{5} - 76369 x^{4} + 440739 x^{3} - 473421 x^{2} + 208702 x - 6019$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $5768519015.58$
16.12.281...733.3 $x^{16} - 6 x^{15} - 31 x^{14} + 151 x^{13} + 516 x^{12} - 590 x^{11} - 6688 x^{10} - 7131 x^{9} + 37373 x^{8} + 37037 x^{7} - 29952 x^{6} + 88844 x^{5} - 42918 x^{4} - 202319 x^{3} - 104234 x^{2} - 16731 x - 845$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $20079785198.0$
16.8.281...733.3 $x^{16} - x^{15} - 13 x^{14} + 31 x^{13} - 90 x^{12} - 489 x^{11} + 4456 x^{10} - 2012 x^{9} - 48714 x^{8} + 115932 x^{7} + 42061 x^{6} - 435653 x^{5} + 539015 x^{4} - 311680 x^{3} + 148483 x^{2} - 46085 x + 325$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $4489113699.67$
16.4.281...733.4 $x^{16} - 2 x^{15} + 5 x^{14} + 78 x^{13} - 246 x^{12} - 769 x^{11} + 330 x^{10} + 6906 x^{9} - 19407 x^{8} + 1822 x^{7} + 48192 x^{6} - 211774 x^{5} + 232610 x^{4} - 114621 x^{3} - 5746 x^{2} + 32903 x - 14521$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $2238174099.8$
16.8.281...733.4 $x^{16} - 7 x^{15} - 6 x^{14} + 36 x^{13} + 110 x^{12} + 2171 x^{11} - 10110 x^{10} - 4731 x^{9} + 51733 x^{8} + 44015 x^{7} - 340852 x^{6} + 419132 x^{5} - 151969 x^{4} - 55505 x^{3} + 73737 x^{2} - 27755 x + 4225$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $10192111835.3$
16.8.281...733.5 $x^{16} - 6 x^{15} - 22 x^{14} + 137 x^{13} - 59 x^{12} - 285 x^{11} + 3309 x^{10} - 3437 x^{9} - 19393 x^{8} + 6483 x^{7} - 9253 x^{6} - 113310 x^{5} + 48145 x^{4} + 232115 x^{3} - 132236 x^{2} + 17017 x + 13429$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $11773005051.6$
16.4.281...733.6 $x^{16} - 7 x^{15} + 41 x^{14} - 261 x^{13} + 1332 x^{12} - 4809 x^{11} + 18437 x^{10} - 59638 x^{9} + 165145 x^{8} - 321010 x^{7} + 773293 x^{6} - 1280540 x^{5} + 1749933 x^{4} - 1271351 x^{3} - 421653 x^{2} + 643045 x + 4651$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) $[2]$ $1619466004.2$
16.8.281...733.6 $x^{16} - 4 x^{15} + 3 x^{14} + 115 x^{13} - 617 x^{12} + 842 x^{11} + 1813 x^{10} - 16023 x^{9} + 24948 x^{8} - 4632 x^{7} - 53787 x^{6} + 452397 x^{5} - 452192 x^{4} - 824026 x^{3} + 1303097 x^{2} - 479479 x + 17959$ $13^{9}\cdot 61^{12}$ $C_2^6.\SD_{16}$ (as 16T1250) trivial $16518079387.6$
Next   displayed columns for results