Normalized defining polynomial
\( x^{16} - 6 x^{15} - 31 x^{14} + 151 x^{13} + 516 x^{12} - 590 x^{11} - 6688 x^{10} - 7131 x^{9} + \cdots - 845 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[12, 2]$ |
| |
Discriminant: |
\(28148042033661945531328523232733\)
\(\medspace = 13^{9}\cdot 61^{12}\)
|
| |
Root discriminant: | \(92.38\) |
| |
Galois root discriminant: | $13^{3/4}61^{3/4}\approx 149.4358817512091$ | ||
Ramified primes: |
\(13\), \(61\)
|
| |
Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{247}a^{14}+\frac{85}{247}a^{13}+\frac{86}{247}a^{12}-\frac{70}{247}a^{11}-\frac{30}{247}a^{10}-\frac{122}{247}a^{9}+\frac{59}{247}a^{8}-\frac{98}{247}a^{7}-\frac{119}{247}a^{6}-\frac{7}{19}a^{5}+\frac{8}{19}a^{4}-\frac{89}{247}a^{3}-\frac{31}{247}a^{2}+\frac{8}{19}a+\frac{8}{19}$, $\frac{1}{57\cdots 29}a^{15}+\frac{57\cdots 18}{57\cdots 29}a^{14}+\frac{27\cdots 23}{57\cdots 29}a^{13}-\frac{10\cdots 05}{57\cdots 29}a^{12}+\frac{25\cdots 15}{57\cdots 29}a^{11}-\frac{92\cdots 83}{44\cdots 33}a^{10}-\frac{18\cdots 11}{57\cdots 29}a^{9}+\frac{26\cdots 88}{57\cdots 29}a^{8}-\frac{17\cdots 52}{57\cdots 29}a^{7}+\frac{96\cdots 82}{57\cdots 29}a^{6}+\frac{86\cdots 07}{44\cdots 33}a^{5}-\frac{13\cdots 26}{57\cdots 29}a^{4}+\frac{17\cdots 55}{57\cdots 29}a^{3}+\frac{28\cdots 06}{57\cdots 29}a^{2}+\frac{13\cdots 95}{44\cdots 33}a-\frac{98\cdots 79}{44\cdots 33}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $13$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{53\cdots 71}{31\cdots 03}a^{15}-\frac{32\cdots 89}{31\cdots 03}a^{14}-\frac{16\cdots 64}{31\cdots 03}a^{13}+\frac{82\cdots 38}{31\cdots 03}a^{12}+\frac{26\cdots 15}{31\cdots 03}a^{11}-\frac{34\cdots 43}{31\cdots 03}a^{10}-\frac{35\cdots 85}{31\cdots 03}a^{9}-\frac{33\cdots 40}{31\cdots 03}a^{8}+\frac{20\cdots 78}{31\cdots 03}a^{7}+\frac{13\cdots 58}{23\cdots 31}a^{6}-\frac{13\cdots 13}{23\cdots 31}a^{5}+\frac{49\cdots 16}{31\cdots 03}a^{4}-\frac{28\cdots 97}{31\cdots 03}a^{3}-\frac{80\cdots 86}{23\cdots 31}a^{2}-\frac{33\cdots 25}{23\cdots 31}a-\frac{29\cdots 53}{23\cdots 31}$, $\frac{69\cdots 11}{57\cdots 29}a^{15}-\frac{42\cdots 45}{57\cdots 29}a^{14}-\frac{21\cdots 31}{57\cdots 29}a^{13}+\frac{10\cdots 36}{57\cdots 29}a^{12}+\frac{34\cdots 50}{57\cdots 29}a^{11}-\frac{45\cdots 38}{57\cdots 29}a^{10}-\frac{46\cdots 83}{57\cdots 29}a^{9}-\frac{44\cdots 50}{57\cdots 29}a^{8}+\frac{26\cdots 89}{57\cdots 29}a^{7}+\frac{22\cdots 48}{57\cdots 29}a^{6}-\frac{18\cdots 55}{44\cdots 33}a^{5}+\frac{65\cdots 98}{57\cdots 29}a^{4}-\frac{37\cdots 95}{57\cdots 29}a^{3}-\frac{13\cdots 35}{57\cdots 29}a^{2}-\frac{43\cdots 67}{44\cdots 33}a-\frac{38\cdots 92}{44\cdots 33}$, $\frac{58\cdots 21}{31\cdots 03}a^{15}-\frac{35\cdots 42}{31\cdots 03}a^{14}-\frac{17\cdots 92}{31\cdots 03}a^{13}+\frac{89\cdots 03}{31\cdots 03}a^{12}+\frac{29\cdots 18}{31\cdots 03}a^{11}-\frac{37\cdots 30}{31\cdots 03}a^{10}-\frac{38\cdots 75}{31\cdots 03}a^{9}-\frac{37\cdots 57}{31\cdots 03}a^{8}+\frac{22\cdots 32}{31\cdots 03}a^{7}+\frac{14\cdots 86}{23\cdots 31}a^{6}-\frac{15\cdots 35}{23\cdots 31}a^{5}+\frac{53\cdots 81}{31\cdots 03}a^{4}-\frac{30\cdots 28}{31\cdots 03}a^{3}-\frac{88\cdots 98}{23\cdots 31}a^{2}-\frac{37\cdots 90}{23\cdots 31}a-\frac{32\cdots 57}{23\cdots 31}$, $\frac{61\cdots 12}{59\cdots 57}a^{15}-\frac{36\cdots 20}{59\cdots 57}a^{14}-\frac{18\cdots 71}{59\cdots 57}a^{13}+\frac{93\cdots 36}{59\cdots 57}a^{12}+\frac{31\cdots 79}{59\cdots 57}a^{11}-\frac{37\cdots 62}{59\cdots 57}a^{10}-\frac{40\cdots 98}{59\cdots 57}a^{9}-\frac{41\cdots 38}{59\cdots 57}a^{8}+\frac{23\cdots 16}{59\cdots 57}a^{7}+\frac{16\cdots 81}{45\cdots 89}a^{6}-\frac{15\cdots 51}{45\cdots 89}a^{5}+\frac{55\cdots 06}{59\cdots 57}a^{4}-\frac{28\cdots 90}{59\cdots 57}a^{3}-\frac{95\cdots 16}{45\cdots 89}a^{2}-\frac{22\cdots 99}{23\cdots 31}a-\frac{38\cdots 73}{45\cdots 89}$, $\frac{42\cdots 64}{57\cdots 29}a^{15}-\frac{20\cdots 29}{44\cdots 33}a^{14}-\frac{12\cdots 05}{57\cdots 29}a^{13}+\frac{65\cdots 38}{57\cdots 29}a^{12}+\frac{20\cdots 33}{57\cdots 29}a^{11}-\frac{28\cdots 30}{57\cdots 29}a^{10}-\frac{27\cdots 02}{57\cdots 29}a^{9}-\frac{25\cdots 82}{57\cdots 29}a^{8}+\frac{16\cdots 30}{57\cdots 29}a^{7}+\frac{12\cdots 57}{57\cdots 29}a^{6}-\frac{11\cdots 86}{44\cdots 33}a^{5}+\frac{40\cdots 51}{57\cdots 29}a^{4}-\frac{24\cdots 20}{57\cdots 29}a^{3}-\frac{80\cdots 39}{57\cdots 29}a^{2}-\frac{24\cdots 41}{44\cdots 33}a-\frac{20\cdots 36}{44\cdots 33}$, $\frac{40\cdots 47}{57\cdots 29}a^{15}-\frac{24\cdots 40}{57\cdots 29}a^{14}-\frac{12\cdots 48}{57\cdots 29}a^{13}+\frac{62\cdots 36}{57\cdots 29}a^{12}+\frac{20\cdots 21}{57\cdots 29}a^{11}-\frac{26\cdots 80}{57\cdots 29}a^{10}-\frac{26\cdots 05}{57\cdots 29}a^{9}-\frac{25\cdots 49}{57\cdots 29}a^{8}+\frac{11\cdots 45}{44\cdots 33}a^{7}+\frac{13\cdots 86}{57\cdots 29}a^{6}-\frac{10\cdots 55}{44\cdots 33}a^{5}+\frac{37\cdots 44}{57\cdots 29}a^{4}-\frac{16\cdots 83}{44\cdots 33}a^{3}-\frac{80\cdots 08}{57\cdots 29}a^{2}-\frac{25\cdots 22}{44\cdots 33}a-\frac{22\cdots 14}{44\cdots 33}$, $\frac{90\cdots 37}{31\cdots 03}a^{15}-\frac{36\cdots 24}{31\cdots 03}a^{14}-\frac{39\cdots 39}{31\cdots 03}a^{13}+\frac{88\cdots 86}{31\cdots 03}a^{12}+\frac{75\cdots 95}{31\cdots 03}a^{11}+\frac{20\cdots 05}{31\cdots 03}a^{10}-\frac{74\cdots 69}{31\cdots 03}a^{9}-\frac{17\cdots 29}{31\cdots 03}a^{8}+\frac{27\cdots 14}{31\cdots 03}a^{7}+\frac{78\cdots 61}{23\cdots 31}a^{6}+\frac{55\cdots 58}{23\cdots 31}a^{5}+\frac{98\cdots 08}{31\cdots 03}a^{4}+\frac{15\cdots 98}{31\cdots 03}a^{3}-\frac{27\cdots 49}{23\cdots 31}a^{2}-\frac{27\cdots 81}{23\cdots 31}a-\frac{28\cdots 21}{23\cdots 31}$, $\frac{12\cdots 37}{57\cdots 29}a^{15}-\frac{78\cdots 12}{57\cdots 29}a^{14}-\frac{37\cdots 76}{57\cdots 29}a^{13}+\frac{19\cdots 82}{57\cdots 29}a^{12}+\frac{61\cdots 24}{57\cdots 29}a^{11}-\frac{86\cdots 15}{57\cdots 29}a^{10}-\frac{64\cdots 86}{44\cdots 33}a^{9}-\frac{75\cdots 59}{57\cdots 29}a^{8}+\frac{48\cdots 56}{57\cdots 29}a^{7}+\frac{37\cdots 59}{57\cdots 29}a^{6}-\frac{33\cdots 36}{44\cdots 33}a^{5}+\frac{12\cdots 97}{57\cdots 29}a^{4}-\frac{80\cdots 55}{57\cdots 29}a^{3}-\frac{23\cdots 21}{57\cdots 29}a^{2}-\frac{72\cdots 88}{44\cdots 33}a-\frac{60\cdots 08}{44\cdots 33}$, $\frac{23\cdots 22}{57\cdots 29}a^{15}-\frac{14\cdots 58}{57\cdots 29}a^{14}-\frac{71\cdots 68}{57\cdots 29}a^{13}+\frac{36\cdots 15}{57\cdots 29}a^{12}+\frac{90\cdots 05}{44\cdots 33}a^{11}-\frac{15\cdots 55}{57\cdots 29}a^{10}-\frac{15\cdots 42}{57\cdots 29}a^{9}-\frac{14\cdots 09}{57\cdots 29}a^{8}+\frac{89\cdots 25}{57\cdots 29}a^{7}+\frac{76\cdots 76}{57\cdots 29}a^{6}-\frac{61\cdots 45}{44\cdots 33}a^{5}+\frac{21\cdots 53}{57\cdots 29}a^{4}-\frac{12\cdots 15}{57\cdots 29}a^{3}-\frac{46\cdots 00}{57\cdots 29}a^{2}-\frac{76\cdots 50}{23\cdots 07}a-\frac{12\cdots 73}{44\cdots 33}$, $\frac{10\cdots 58}{57\cdots 29}a^{15}-\frac{73\cdots 94}{57\cdots 29}a^{14}-\frac{27\cdots 25}{57\cdots 29}a^{13}+\frac{18\cdots 93}{57\cdots 29}a^{12}+\frac{39\cdots 23}{57\cdots 29}a^{11}-\frac{10\cdots 83}{57\cdots 29}a^{10}-\frac{63\cdots 19}{57\cdots 29}a^{9}-\frac{15\cdots 27}{44\cdots 33}a^{8}+\frac{42\cdots 73}{57\cdots 29}a^{7}+\frac{30\cdots 45}{57\cdots 29}a^{6}-\frac{31\cdots 74}{44\cdots 33}a^{5}+\frac{12\cdots 51}{57\cdots 29}a^{4}-\frac{80\cdots 80}{30\cdots 91}a^{3}-\frac{10\cdots 39}{57\cdots 29}a^{2}-\frac{35\cdots 90}{44\cdots 33}a+\frac{50\cdots 96}{44\cdots 33}$, $\frac{90\cdots 73}{30\cdots 91}a^{15}-\frac{50\cdots 61}{30\cdots 91}a^{14}-\frac{30\cdots 75}{30\cdots 91}a^{13}+\frac{12\cdots 85}{30\cdots 91}a^{12}+\frac{53\cdots 50}{30\cdots 91}a^{11}-\frac{29\cdots 57}{23\cdots 07}a^{10}-\frac{63\cdots 96}{30\cdots 91}a^{9}-\frac{87\cdots 56}{30\cdots 91}a^{8}+\frac{32\cdots 12}{30\cdots 91}a^{7}+\frac{48\cdots 69}{30\cdots 91}a^{6}-\frac{17\cdots 95}{23\cdots 07}a^{5}+\frac{61\cdots 34}{30\cdots 91}a^{4}+\frac{34\cdots 49}{30\cdots 91}a^{3}-\frac{21\cdots 61}{30\cdots 91}a^{2}-\frac{11\cdots 53}{23\cdots 07}a-\frac{11\cdots 89}{23\cdots 07}$, $\frac{79\cdots 53}{30\cdots 91}a^{15}-\frac{48\cdots 12}{30\cdots 91}a^{14}-\frac{23\cdots 69}{30\cdots 91}a^{13}+\frac{12\cdots 86}{30\cdots 91}a^{12}+\frac{39\cdots 86}{30\cdots 91}a^{11}-\frac{51\cdots 87}{30\cdots 91}a^{10}-\frac{52\cdots 70}{30\cdots 91}a^{9}-\frac{50\cdots 87}{30\cdots 91}a^{8}+\frac{30\cdots 02}{30\cdots 91}a^{7}+\frac{25\cdots 02}{30\cdots 91}a^{6}-\frac{20\cdots 33}{23\cdots 07}a^{5}+\frac{73\cdots 97}{30\cdots 91}a^{4}-\frac{42\cdots 49}{30\cdots 91}a^{3}-\frac{15\cdots 16}{30\cdots 91}a^{2}-\frac{49\cdots 01}{23\cdots 07}a-\frac{43\cdots 56}{23\cdots 07}$, $\frac{19\cdots 36}{57\cdots 29}a^{15}-\frac{11\cdots 81}{57\cdots 29}a^{14}-\frac{30\cdots 38}{30\cdots 91}a^{13}+\frac{29\cdots 09}{57\cdots 29}a^{12}+\frac{96\cdots 03}{57\cdots 29}a^{11}-\frac{53\cdots 03}{23\cdots 07}a^{10}-\frac{12\cdots 16}{57\cdots 29}a^{9}-\frac{11\cdots 77}{57\cdots 29}a^{8}+\frac{75\cdots 79}{57\cdots 29}a^{7}+\frac{63\cdots 11}{57\cdots 29}a^{6}-\frac{58\cdots 09}{44\cdots 33}a^{5}+\frac{17\cdots 02}{57\cdots 29}a^{4}-\frac{12\cdots 54}{57\cdots 29}a^{3}-\frac{41\cdots 51}{57\cdots 29}a^{2}-\frac{13\cdots 31}{44\cdots 33}a-\frac{11\cdots 17}{44\cdots 33}$
|
| |
Regulator: | \( 20079785198.0 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{2}\cdot 20079785198.0 \cdot 1}{2\cdot\sqrt{28148042033661945531328523232733}}\cr\approx \mathstrut & 0.306002275667 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6.\SD_{16}$ (as 16T1250):
A solvable group of order 1024 |
The 34 conjugacy class representatives for $C_2^6.\SD_{16}$ |
Character table for $C_2^6.\SD_{16}$ |
Intermediate fields
\(\Q(\sqrt{61}) \), 4.4.48373.1, 8.8.113190262471117.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.166556461737644648114369959957.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | $16$ | $16$ | R | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(13\)
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
13.1.4.3a1.3 | $x^{4} + 52$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
\(61\)
| 61.1.4.3a1.3 | $x^{4} + 244$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
61.1.4.3a1.3 | $x^{4} + 244$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
61.2.4.6a1.2 | $x^{8} + 240 x^{7} + 21608 x^{6} + 865440 x^{5} + 13046424 x^{4} + 1730880 x^{3} + 86432 x^{2} + 1920 x + 77$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |