Show commands: Magma
Group invariants
Abstract group: | $C_2^6.\SD_{16}$ |
| |
Order: | $1024=2^{10}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $7$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $1250$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,4,2,3)(5,7)(6,8)(9,14,10,13)(15,16)$, $(1,10,4,12,5,14,8,16,2,9,3,11,6,13,7,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $QD_{16}$, $C_2^2:C_4$, $Q_{16}$ $32$: $C_4\wr C_2$, $C_2^3 : C_4 $, 32T50 $64$: $((C_8 : C_2):C_2):C_2$, 16T154, 16T161 $128$: 32T1744 $256$: 16T684 $512$: 32T16784 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $QD_{16}$
Low degree siblings
16T1250 x 3, 16T1264 x 4, 32T36613 x 2, 32T36614 x 8, 32T36615 x 4, 32T36616 x 2, 32T36729 x 4, 32T36730 x 2, 32T36731 x 4, 32T36732 x 2, 32T56626 x 2, 32T56629 x 2, 32T71138 x 2, 32T90322 x 2, 32T94985 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2C | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(11,12)(15,16)$ |
2D | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
2E | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 3, 4)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2F | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 5, 6)( 7, 8)(11,12)(15,16)$ |
2G | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2H | $2^{2},1^{12}$ | $8$ | $2$ | $2$ | $(13,14)(15,16)$ |
2I | $2^{4},1^{8}$ | $8$ | $2$ | $4$ | $( 3, 4)( 7, 8)(13,14)(15,16)$ |
2J | $2^{4},1^{8}$ | $16$ | $2$ | $4$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
2K | $2^{8}$ | $16$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
4A | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)$ |
4B | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,14,10,13)(11,15,12,16)$ |
4C | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13,10,14)(11,15,12,16)$ |
4D1 | $4,2^{4},1^{4}$ | $32$ | $4$ | $7$ | $( 3, 7)( 4, 8)( 9,11)(10,12)(13,15,14,16)$ |
4D-1 | $4,2^{4},1^{4}$ | $32$ | $4$ | $7$ | $( 3, 7)( 4, 8)( 9,11)(10,12)(13,16,14,15)$ |
4E1 | $4^{2},2^{3},1^{2}$ | $32$ | $4$ | $9$ | $( 3, 7, 4, 8)( 5, 6)( 9,11)(10,12)(13,15,14,16)$ |
4E-1 | $4^{2},2^{3},1^{2}$ | $32$ | $4$ | $9$ | $( 3, 7, 4, 8)( 5, 6)( 9,11)(10,12)(13,16,14,15)$ |
4F1 | $4^{2},2^{3},1^{2}$ | $32$ | $4$ | $9$ | $( 3, 7, 4, 8)( 5, 6)( 9,11,10,12)(13,15)(14,16)$ |
4F-1 | $4^{2},2^{3},1^{2}$ | $32$ | $4$ | $9$ | $( 3, 7, 4, 8)( 5, 6)( 9,11,10,12)(13,16)(14,15)$ |
4G1 | $4,2^{6}$ | $32$ | $4$ | $9$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,11)(10,12)(13,15,14,16)$ |
4G-1 | $4,2^{6}$ | $32$ | $4$ | $9$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,11)(10,12)(13,16,14,15)$ |
4H1 | $4^{4}$ | $64$ | $4$ | $12$ | $( 1,10, 6,13)( 2, 9, 5,14)( 3,16, 8,11)( 4,15, 7,12)$ |
4H-1 | $4^{4}$ | $64$ | $4$ | $12$ | $( 1,13, 6,10)( 2,14, 5, 9)( 3,11, 8,16)( 4,12, 7,15)$ |
8A1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1, 7, 6, 4, 2, 8, 5, 3)( 9,15,14,12,10,16,13,11)$ |
8A-1 | $8^{2}$ | $32$ | $8$ | $14$ | $( 1, 3, 5, 8, 2, 4, 6, 7)( 9,11,13,16,10,12,14,15)$ |
8B | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 3, 6, 8, 2, 4, 5, 7)( 9,11,14,15,10,12,13,16)$ |
8C | $8^{2}$ | $64$ | $8$ | $14$ | $( 1,13, 6,10, 2,14, 5, 9)( 3,12, 8,15, 4,11, 7,16)$ |
8D | $8^{2}$ | $64$ | $8$ | $14$ | $( 1,12, 6,16, 2,11, 5,15)( 3,10, 8,13, 4, 9, 7,14)$ |
16A1 | $16$ | $64$ | $16$ | $15$ | $( 1,15, 7,14, 6,12, 4,10, 2,16, 8,13, 5,11, 3, 9)$ |
16A-1 | $16$ | $64$ | $16$ | $15$ | $( 1, 9, 3,11, 5,13, 8,16, 2,10, 4,12, 6,14, 7,15)$ |
16A3 | $16$ | $64$ | $16$ | $15$ | $( 1,14, 4,16, 5, 9, 7,12, 2,13, 3,15, 6,10, 8,11)$ |
16A-3 | $16$ | $64$ | $16$ | $15$ | $( 1,11, 8,10, 6,15, 3,13, 2,12, 7, 9, 5,16, 4,14)$ |
Malle's constant $a(G)$: $1/2$
Character table
34 x 34 character table
Regular extensions
Data not computed