Normalized defining polynomial
\( x^{16} - x^{15} - 12 x^{14} + 14 x^{13} - 89 x^{12} + 152 x^{11} + 651 x^{10} + 332 x^{9} - 821 x^{8} + \cdots + 18769 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(2200830136976503360666408203125\)
\(\medspace = 5^{9}\cdot 101^{12}\)
|
| |
Root discriminant: | \(78.78\) |
| |
Galois root discriminant: | $5^{3/4}101^{3/4}\approx 106.52916761335055$ | ||
Ramified primes: |
\(5\), \(101\)
|
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5}a^{13}-\frac{2}{5}a^{12}+\frac{1}{5}a^{10}+\frac{1}{5}a^{9}+\frac{1}{5}a^{8}+\frac{2}{5}a^{7}+\frac{2}{5}a^{6}-\frac{1}{5}a^{5}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{5}a^{14}+\frac{1}{5}a^{12}+\frac{1}{5}a^{11}-\frac{2}{5}a^{10}-\frac{2}{5}a^{9}-\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{2}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{1}{5}a^{3}+\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{23\cdots 95}a^{15}-\frac{33\cdots 14}{46\cdots 59}a^{14}+\frac{34\cdots 59}{46\cdots 59}a^{13}-\frac{33\cdots 92}{23\cdots 95}a^{12}+\frac{54\cdots 13}{23\cdots 95}a^{11}-\frac{64\cdots 18}{23\cdots 95}a^{10}+\frac{80\cdots 08}{23\cdots 95}a^{9}+\frac{15\cdots 84}{46\cdots 59}a^{8}-\frac{10\cdots 34}{23\cdots 95}a^{7}+\frac{98\cdots 51}{23\cdots 95}a^{6}+\frac{19\cdots 27}{23\cdots 95}a^{5}-\frac{10\cdots 99}{23\cdots 95}a^{4}+\frac{25\cdots 54}{23\cdots 95}a^{3}+\frac{51\cdots 48}{23\cdots 95}a^{2}-\frac{47\cdots 86}{23\cdots 95}a+\frac{14\cdots 56}{17\cdots 35}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{55\cdots 23}{17\cdots 35}a^{15}+\frac{22\cdots 12}{34\cdots 07}a^{14}-\frac{36\cdots 06}{17\cdots 35}a^{13}-\frac{42\cdots 24}{17\cdots 35}a^{12}-\frac{57\cdots 76}{17\cdots 35}a^{11}-\frac{16\cdots 53}{34\cdots 07}a^{10}+\frac{11\cdots 83}{17\cdots 35}a^{9}+\frac{65\cdots 99}{17\cdots 35}a^{8}+\frac{11\cdots 76}{17\cdots 35}a^{7}-\frac{16\cdots 39}{17\cdots 35}a^{6}-\frac{90\cdots 88}{17\cdots 35}a^{5}+\frac{24\cdots 88}{17\cdots 35}a^{4}+\frac{14\cdots 81}{17\cdots 35}a^{3}+\frac{23\cdots 27}{34\cdots 07}a^{2}-\frac{36\cdots 18}{34\cdots 07}a+\frac{57\cdots 53}{17\cdots 35}$, $\frac{45\cdots 61}{17\cdots 35}a^{15}-\frac{34\cdots 43}{34\cdots 07}a^{14}-\frac{47\cdots 27}{17\cdots 35}a^{13}+\frac{21\cdots 67}{17\cdots 35}a^{12}-\frac{58\cdots 02}{17\cdots 35}a^{11}+\frac{34\cdots 89}{34\cdots 07}a^{10}+\frac{20\cdots 21}{17\cdots 35}a^{9}-\frac{72\cdots 47}{17\cdots 35}a^{8}-\frac{48\cdots 63}{17\cdots 35}a^{7}-\frac{18\cdots 48}{17\cdots 35}a^{6}+\frac{60\cdots 89}{17\cdots 35}a^{5}-\frac{58\cdots 84}{17\cdots 35}a^{4}-\frac{14\cdots 13}{17\cdots 35}a^{3}-\frac{76\cdots 02}{34\cdots 07}a^{2}+\frac{55\cdots 48}{34\cdots 07}a+\frac{22\cdots 66}{17\cdots 35}$, $\frac{36\cdots 38}{17\cdots 35}a^{15}+\frac{28\cdots 33}{34\cdots 07}a^{14}-\frac{23\cdots 26}{17\cdots 35}a^{13}+\frac{14\cdots 06}{17\cdots 35}a^{12}-\frac{41\cdots 56}{17\cdots 35}a^{11}+\frac{34\cdots 38}{34\cdots 07}a^{10}+\frac{14\cdots 43}{17\cdots 35}a^{9}+\frac{31\cdots 89}{17\cdots 35}a^{8}+\frac{26\cdots 71}{17\cdots 35}a^{7}-\frac{81\cdots 79}{17\cdots 35}a^{6}+\frac{21\cdots 42}{17\cdots 35}a^{5}+\frac{99\cdots 23}{17\cdots 35}a^{4}+\frac{15\cdots 71}{17\cdots 35}a^{3}-\frac{21\cdots 49}{34\cdots 07}a^{2}-\frac{13\cdots 68}{34\cdots 07}a+\frac{57\cdots 28}{17\cdots 35}$, $\frac{32\cdots 05}{46\cdots 59}a^{15}+\frac{15\cdots 29}{46\cdots 59}a^{14}-\frac{40\cdots 09}{46\cdots 59}a^{13}-\frac{13\cdots 36}{46\cdots 59}a^{12}-\frac{28\cdots 01}{46\cdots 59}a^{11}+\frac{56\cdots 10}{46\cdots 59}a^{10}+\frac{27\cdots 71}{46\cdots 59}a^{9}+\frac{50\cdots 05}{46\cdots 59}a^{8}+\frac{27\cdots 86}{46\cdots 59}a^{7}-\frac{19\cdots 09}{46\cdots 59}a^{6}-\frac{40\cdots 61}{46\cdots 59}a^{5}-\frac{48\cdots 63}{46\cdots 59}a^{4}-\frac{11\cdots 59}{46\cdots 59}a^{3}+\frac{33\cdots 47}{46\cdots 59}a^{2}-\frac{47\cdots 83}{46\cdots 59}a-\frac{34\cdots 22}{34\cdots 07}$, $\frac{14\cdots 26}{23\cdots 95}a^{15}+\frac{10\cdots 86}{23\cdots 95}a^{14}-\frac{11\cdots 08}{23\cdots 95}a^{13}+\frac{80\cdots 00}{46\cdots 59}a^{12}-\frac{15\cdots 61}{23\cdots 95}a^{11}-\frac{36\cdots 38}{23\cdots 95}a^{10}+\frac{45\cdots 33}{23\cdots 95}a^{9}+\frac{11\cdots 46}{23\cdots 95}a^{8}+\frac{16\cdots 86}{23\cdots 95}a^{7}-\frac{25\cdots 67}{23\cdots 95}a^{6}+\frac{22\cdots 73}{23\cdots 95}a^{5}+\frac{38\cdots 32}{23\cdots 95}a^{4}+\frac{26\cdots 52}{23\cdots 95}a^{3}+\frac{11\cdots 26}{23\cdots 95}a^{2}-\frac{15\cdots 10}{46\cdots 59}a-\frac{39\cdots 63}{17\cdots 35}$, $\frac{16\cdots 26}{23\cdots 95}a^{15}+\frac{59\cdots 27}{23\cdots 95}a^{14}-\frac{93\cdots 84}{23\cdots 95}a^{13}+\frac{69\cdots 58}{23\cdots 95}a^{12}-\frac{37\cdots 22}{46\cdots 59}a^{11}+\frac{62\cdots 79}{23\cdots 95}a^{10}+\frac{58\cdots 25}{46\cdots 59}a^{9}+\frac{16\cdots 09}{23\cdots 95}a^{8}+\frac{19\cdots 25}{46\cdots 59}a^{7}+\frac{25\cdots 14}{23\cdots 95}a^{6}+\frac{72\cdots 77}{23\cdots 95}a^{5}+\frac{62\cdots 83}{23\cdots 95}a^{4}+\frac{20\cdots 07}{23\cdots 95}a^{3}+\frac{12\cdots 02}{23\cdots 95}a^{2}+\frac{42\cdots 49}{46\cdots 59}a-\frac{21\cdots 39}{17\cdots 35}$, $\frac{23\cdots 62}{46\cdots 59}a^{15}-\frac{74\cdots 20}{46\cdots 59}a^{14}-\frac{15\cdots 21}{23\cdots 95}a^{13}+\frac{29\cdots 57}{23\cdots 95}a^{12}-\frac{23\cdots 31}{46\cdots 59}a^{11}+\frac{53\cdots 79}{23\cdots 95}a^{10}+\frac{69\cdots 19}{23\cdots 95}a^{9}+\frac{26\cdots 69}{23\cdots 95}a^{8}-\frac{28\cdots 17}{23\cdots 95}a^{7}-\frac{14\cdots 47}{23\cdots 95}a^{6}+\frac{44\cdots 26}{23\cdots 95}a^{5}+\frac{16\cdots 05}{46\cdots 59}a^{4}+\frac{15\cdots 34}{23\cdots 95}a^{3}-\frac{11\cdots 89}{23\cdots 95}a^{2}-\frac{13\cdots 27}{23\cdots 95}a+\frac{55\cdots 46}{17\cdots 35}$, $\frac{32\cdots 16}{46\cdots 59}a^{15}-\frac{42\cdots 37}{23\cdots 95}a^{14}-\frac{20\cdots 01}{46\cdots 59}a^{13}+\frac{15\cdots 13}{23\cdots 95}a^{12}-\frac{37\cdots 92}{23\cdots 95}a^{11}+\frac{40\cdots 29}{23\cdots 95}a^{10}+\frac{65\cdots 94}{23\cdots 95}a^{9}+\frac{15\cdots 92}{23\cdots 95}a^{8}-\frac{81\cdots 82}{23\cdots 95}a^{7}-\frac{33\cdots 76}{23\cdots 95}a^{6}+\frac{79\cdots 79}{23\cdots 95}a^{5}+\frac{39\cdots 68}{23\cdots 95}a^{4}-\frac{25\cdots 17}{23\cdots 95}a^{3}-\frac{10\cdots 86}{46\cdots 59}a^{2}-\frac{57\cdots 09}{23\cdots 95}a+\frac{23\cdots 59}{17\cdots 35}$, $\frac{45\cdots 13}{23\cdots 95}a^{15}-\frac{51\cdots 11}{23\cdots 95}a^{14}-\frac{56\cdots 64}{23\cdots 95}a^{13}+\frac{73\cdots 51}{23\cdots 95}a^{12}-\frac{38\cdots 22}{23\cdots 95}a^{11}+\frac{68\cdots 74}{23\cdots 95}a^{10}+\frac{29\cdots 52}{23\cdots 95}a^{9}+\frac{12\cdots 52}{23\cdots 95}a^{8}-\frac{72\cdots 11}{23\cdots 95}a^{7}-\frac{24\cdots 78}{23\cdots 95}a^{6}+\frac{13\cdots 62}{23\cdots 95}a^{5}+\frac{16\cdots 97}{23\cdots 95}a^{4}+\frac{51\cdots 07}{23\cdots 95}a^{3}-\frac{18\cdots 62}{23\cdots 95}a^{2}-\frac{29\cdots 88}{23\cdots 95}a+\frac{12\cdots 44}{17\cdots 35}$, $\frac{12\cdots 33}{23\cdots 95}a^{15}+\frac{10\cdots 77}{23\cdots 95}a^{14}-\frac{10\cdots 16}{23\cdots 95}a^{13}+\frac{13\cdots 43}{23\cdots 95}a^{12}-\frac{11\cdots 54}{23\cdots 95}a^{11}-\frac{42\cdots 04}{23\cdots 95}a^{10}+\frac{41\cdots 69}{23\cdots 95}a^{9}+\frac{11\cdots 37}{23\cdots 95}a^{8}+\frac{99\cdots 88}{23\cdots 95}a^{7}-\frac{24\cdots 43}{23\cdots 95}a^{6}+\frac{16\cdots 88}{23\cdots 95}a^{5}+\frac{40\cdots 98}{46\cdots 59}a^{4}+\frac{23\cdots 38}{23\cdots 95}a^{3}+\frac{11\cdots 65}{46\cdots 59}a^{2}-\frac{30\cdots 11}{23\cdots 95}a-\frac{22\cdots 35}{34\cdots 07}$, $\frac{11\cdots 20}{46\cdots 59}a^{15}+\frac{12\cdots 59}{23\cdots 95}a^{14}-\frac{59\cdots 13}{23\cdots 95}a^{13}+\frac{45\cdots 13}{46\cdots 59}a^{12}-\frac{51\cdots 96}{23\cdots 95}a^{11}+\frac{16\cdots 39}{23\cdots 95}a^{10}+\frac{31\cdots 04}{23\cdots 95}a^{9}+\frac{43\cdots 98}{23\cdots 95}a^{8}+\frac{20\cdots 68}{23\cdots 95}a^{7}-\frac{25\cdots 59}{23\cdots 95}a^{6}-\frac{17\cdots 02}{46\cdots 59}a^{5}+\frac{23\cdots 54}{23\cdots 95}a^{4}+\frac{72\cdots 21}{23\cdots 95}a^{3}-\frac{38\cdots 77}{23\cdots 95}a^{2}-\frac{33\cdots 23}{23\cdots 95}a-\frac{26\cdots 68}{34\cdots 07}$
|
| |
Regulator: | \( 2150910676.85 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 2150910676.85 \cdot 2}{2\cdot\sqrt{2200830136976503360666408203125}}\cr\approx \mathstrut & 0.578480270882 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6.\SD_{16}$ (as 16T1250):
A solvable group of order 1024 |
The 34 conjugacy class representatives for $C_2^6.\SD_{16}$ |
Character table for $C_2^6.\SD_{16}$ |
Intermediate fields
\(\Q(\sqrt{101}) \), 4.4.51005.1, 8.8.132690018825125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.88033205479060134426656328125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | $16$ | R | $16$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(101\)
| 101.1.4.3a1.3 | $x^{4} + 404$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
101.1.4.3a1.3 | $x^{4} + 404$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
101.2.4.6a1.2 | $x^{8} + 388 x^{7} + 56462 x^{6} + 3653020 x^{5} + 88755121 x^{4} + 7306040 x^{3} + 225848 x^{2} + 3104 x + 117$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |