Normalized defining polynomial
\( x^{16} - 8 x^{15} + x^{14} + 57 x^{13} + 113 x^{12} - 40 x^{11} - 1432 x^{10} - 543 x^{9} + 2294 x^{8} + \cdots - 829 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[8, 4]$ |
| |
Discriminant: |
\(2200830136976503360666408203125\)
\(\medspace = 5^{9}\cdot 101^{12}\)
|
| |
Root discriminant: | \(78.78\) |
| |
Galois root discriminant: | $5^{3/4}101^{3/4}\approx 106.52916761335055$ | ||
Ramified primes: |
\(5\), \(101\)
|
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{327455}a^{14}-\frac{39736}{327455}a^{13}-\frac{106867}{327455}a^{12}+\frac{100814}{327455}a^{11}+\frac{55308}{327455}a^{10}-\frac{123503}{327455}a^{9}-\frac{7511}{327455}a^{8}+\frac{128703}{327455}a^{7}+\frac{66806}{327455}a^{6}+\frac{52037}{327455}a^{5}-\frac{76491}{327455}a^{4}-\frac{100986}{327455}a^{3}+\frac{28929}{65491}a^{2}+\frac{128394}{327455}a-\frac{71}{395}$, $\frac{1}{32\cdots 25}a^{15}-\frac{39\cdots 97}{32\cdots 25}a^{14}+\frac{64\cdots 59}{32\cdots 25}a^{13}+\frac{10\cdots 56}{32\cdots 25}a^{12}+\frac{28\cdots 04}{32\cdots 25}a^{11}-\frac{25\cdots 96}{32\cdots 25}a^{10}+\frac{51\cdots 62}{32\cdots 25}a^{9}+\frac{14\cdots 89}{32\cdots 25}a^{8}-\frac{17\cdots 77}{32\cdots 25}a^{7}+\frac{14\cdots 71}{32\cdots 25}a^{6}+\frac{10\cdots 22}{32\cdots 25}a^{5}-\frac{10\cdots 19}{28\cdots 35}a^{4}-\frac{13\cdots 34}{32\cdots 25}a^{3}-\frac{11\cdots 86}{32\cdots 25}a^{2}+\frac{69\cdots 72}{32\cdots 25}a-\frac{49\cdots 09}{39\cdots 25}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{92\cdots 83}{56\cdots 47}a^{15}-\frac{68\cdots 98}{56\cdots 47}a^{14}-\frac{32\cdots 41}{56\cdots 47}a^{13}+\frac{51\cdots 50}{56\cdots 47}a^{12}+\frac{13\cdots 12}{56\cdots 47}a^{11}+\frac{37\cdots 50}{56\cdots 47}a^{10}-\frac{13\cdots 27}{56\cdots 47}a^{9}-\frac{13\cdots 07}{56\cdots 47}a^{8}+\frac{14\cdots 96}{56\cdots 47}a^{7}+\frac{93\cdots 17}{56\cdots 47}a^{6}+\frac{98\cdots 91}{56\cdots 47}a^{5}+\frac{33\cdots 83}{56\cdots 47}a^{4}-\frac{87\cdots 19}{56\cdots 47}a^{3}-\frac{51\cdots 28}{56\cdots 47}a^{2}+\frac{12\cdots 04}{56\cdots 47}a+\frac{82\cdots 58}{67\cdots 43}$, $\frac{64\cdots 12}{32\cdots 25}a^{15}-\frac{35\cdots 89}{32\cdots 25}a^{14}-\frac{11\cdots 42}{32\cdots 25}a^{13}+\frac{30\cdots 97}{32\cdots 25}a^{12}+\frac{15\cdots 98}{32\cdots 25}a^{11}+\frac{22\cdots 48}{32\cdots 25}a^{10}-\frac{77\cdots 06}{32\cdots 25}a^{9}-\frac{25\cdots 82}{32\cdots 25}a^{8}-\frac{10\cdots 49}{32\cdots 25}a^{7}+\frac{73\cdots 27}{32\cdots 25}a^{6}-\frac{72\cdots 11}{32\cdots 25}a^{5}+\frac{13\cdots 22}{28\cdots 35}a^{4}+\frac{22\cdots 67}{32\cdots 25}a^{3}-\frac{48\cdots 82}{32\cdots 25}a^{2}-\frac{34\cdots 36}{32\cdots 25}a+\frac{39\cdots 92}{39\cdots 25}$, $\frac{59\cdots 03}{32\cdots 25}a^{15}-\frac{47\cdots 26}{32\cdots 25}a^{14}+\frac{42\cdots 62}{32\cdots 25}a^{13}+\frac{32\cdots 38}{32\cdots 25}a^{12}+\frac{69\cdots 97}{32\cdots 25}a^{11}-\frac{81\cdots 18}{32\cdots 25}a^{10}-\frac{82\cdots 09}{32\cdots 25}a^{9}-\frac{37\cdots 23}{32\cdots 25}a^{8}+\frac{10\cdots 89}{32\cdots 25}a^{7}-\frac{57\cdots 72}{32\cdots 25}a^{6}+\frac{11\cdots 96}{32\cdots 25}a^{5}+\frac{15\cdots 37}{28\cdots 35}a^{4}-\frac{18\cdots 92}{32\cdots 25}a^{3}-\frac{21\cdots 33}{32\cdots 25}a^{2}+\frac{32\cdots 26}{32\cdots 25}a-\frac{11\cdots 17}{39\cdots 25}$, $\frac{51\cdots 94}{56\cdots 47}a^{15}-\frac{39\cdots 10}{56\cdots 47}a^{14}-\frac{45\cdots 13}{56\cdots 47}a^{13}+\frac{27\cdots 28}{56\cdots 47}a^{12}+\frac{66\cdots 99}{56\cdots 47}a^{11}+\frac{13\cdots 86}{56\cdots 47}a^{10}-\frac{71\cdots 60}{56\cdots 47}a^{9}-\frac{51\cdots 15}{56\cdots 47}a^{8}+\frac{73\cdots 74}{56\cdots 47}a^{7}-\frac{24\cdots 97}{56\cdots 47}a^{6}+\frac{70\cdots 76}{56\cdots 47}a^{5}+\frac{13\cdots 19}{56\cdots 47}a^{4}-\frac{11\cdots 53}{56\cdots 47}a^{3}-\frac{13\cdots 13}{56\cdots 47}a^{2}+\frac{49\cdots 67}{56\cdots 47}a+\frac{80\cdots 80}{67\cdots 43}$, $\frac{14\cdots 05}{56\cdots 47}a^{15}-\frac{73\cdots 49}{56\cdots 47}a^{14}-\frac{30\cdots 70}{56\cdots 47}a^{13}+\frac{70\cdots 28}{56\cdots 47}a^{12}+\frac{38\cdots 13}{56\cdots 47}a^{11}+\frac{54\cdots 76}{56\cdots 47}a^{10}-\frac{17\cdots 48}{56\cdots 47}a^{9}-\frac{62\cdots 76}{56\cdots 47}a^{8}-\frac{21\cdots 42}{56\cdots 47}a^{7}+\frac{16\cdots 23}{56\cdots 47}a^{6}-\frac{67\cdots 90}{56\cdots 47}a^{5}+\frac{49\cdots 01}{56\cdots 47}a^{4}+\frac{59\cdots 40}{56\cdots 47}a^{3}-\frac{17\cdots 92}{56\cdots 47}a^{2}+\frac{38\cdots 38}{56\cdots 47}a+\frac{27\cdots 91}{67\cdots 43}$, $\frac{40\cdots 04}{14\cdots 75}a^{15}-\frac{36\cdots 18}{14\cdots 75}a^{14}+\frac{41\cdots 16}{14\cdots 75}a^{13}+\frac{21\cdots 09}{14\cdots 75}a^{12}+\frac{19\cdots 71}{14\cdots 75}a^{11}-\frac{58\cdots 49}{14\cdots 75}a^{10}-\frac{53\cdots 62}{14\cdots 75}a^{9}+\frac{43\cdots 61}{14\cdots 75}a^{8}+\frac{92\cdots 77}{14\cdots 75}a^{7}-\frac{15\cdots 71}{14\cdots 75}a^{6}+\frac{11\cdots 78}{14\cdots 75}a^{5}+\frac{21\cdots 13}{28\cdots 35}a^{4}-\frac{26\cdots 56}{14\cdots 75}a^{3}-\frac{68\cdots 44}{14\cdots 75}a^{2}+\frac{52\cdots 93}{14\cdots 75}a-\frac{38\cdots 31}{16\cdots 75}$, $\frac{43\cdots 91}{64\cdots 05}a^{15}-\frac{36\cdots 69}{64\cdots 05}a^{14}+\frac{15\cdots 66}{64\cdots 05}a^{13}+\frac{46\cdots 70}{12\cdots 81}a^{12}+\frac{42\cdots 51}{64\cdots 05}a^{11}-\frac{20\cdots 72}{64\cdots 05}a^{10}-\frac{58\cdots 77}{64\cdots 05}a^{9}-\frac{46\cdots 89}{64\cdots 05}a^{8}+\frac{80\cdots 32}{64\cdots 05}a^{7}-\frac{87\cdots 96}{64\cdots 05}a^{6}-\frac{84\cdots 57}{64\cdots 05}a^{5}+\frac{40\cdots 64}{28\cdots 35}a^{4}-\frac{16\cdots 07}{64\cdots 05}a^{3}-\frac{90\cdots 91}{64\cdots 05}a^{2}+\frac{32\cdots 49}{64\cdots 05}a-\frac{18\cdots 52}{78\cdots 45}$, $\frac{10\cdots 10}{56\cdots 47}a^{15}-\frac{41\cdots 16}{28\cdots 35}a^{14}-\frac{94\cdots 89}{28\cdots 35}a^{13}+\frac{26\cdots 97}{28\cdots 35}a^{12}+\frac{65\cdots 16}{28\cdots 35}a^{11}+\frac{28\cdots 42}{28\cdots 35}a^{10}-\frac{69\cdots 72}{28\cdots 35}a^{9}-\frac{45\cdots 59}{28\cdots 35}a^{8}+\frac{38\cdots 02}{28\cdots 35}a^{7}-\frac{10\cdots 01}{28\cdots 35}a^{6}+\frac{51\cdots 68}{28\cdots 35}a^{5}+\frac{87\cdots 61}{28\cdots 35}a^{4}-\frac{14\cdots 19}{28\cdots 35}a^{3}-\frac{99\cdots 13}{56\cdots 47}a^{2}+\frac{45\cdots 96}{28\cdots 35}a-\frac{32\cdots 94}{33\cdots 15}$, $\frac{10\cdots 96}{64\cdots 05}a^{15}-\frac{14\cdots 88}{64\cdots 05}a^{14}+\frac{11\cdots 84}{12\cdots 81}a^{13}+\frac{68\cdots 58}{64\cdots 05}a^{12}-\frac{59\cdots 63}{12\cdots 81}a^{11}-\frac{27\cdots 74}{64\cdots 05}a^{10}+\frac{40\cdots 42}{12\cdots 81}a^{9}+\frac{17\cdots 10}{12\cdots 81}a^{8}-\frac{12\cdots 62}{12\cdots 81}a^{7}-\frac{67\cdots 10}{12\cdots 81}a^{6}+\frac{58\cdots 71}{16\cdots 39}a^{5}+\frac{20\cdots 62}{28\cdots 35}a^{4}-\frac{36\cdots 88}{64\cdots 05}a^{3}-\frac{33\cdots 96}{64\cdots 05}a^{2}+\frac{39\cdots 53}{64\cdots 05}a-\frac{11\cdots 58}{78\cdots 45}$, $\frac{21\cdots 46}{64\cdots 05}a^{15}-\frac{16\cdots 31}{64\cdots 05}a^{14}-\frac{49\cdots 77}{64\cdots 05}a^{13}+\frac{11\cdots 59}{64\cdots 05}a^{12}+\frac{31\cdots 68}{64\cdots 05}a^{11}+\frac{44\cdots 02}{64\cdots 05}a^{10}-\frac{31\cdots 46}{64\cdots 05}a^{9}-\frac{27\cdots 82}{64\cdots 05}a^{8}+\frac{36\cdots 56}{64\cdots 05}a^{7}+\frac{27\cdots 97}{64\cdots 05}a^{6}-\frac{20\cdots 16}{64\cdots 05}a^{5}+\frac{63\cdots 43}{28\cdots 35}a^{4}-\frac{24\cdots 98}{12\cdots 81}a^{3}-\frac{45\cdots 91}{64\cdots 05}a^{2}+\frac{40\cdots 76}{64\cdots 05}a+\frac{37\cdots 88}{15\cdots 89}$, $\frac{17\cdots 73}{56\cdots 47}a^{15}-\frac{59\cdots 36}{28\cdots 35}a^{14}-\frac{53\cdots 14}{28\cdots 35}a^{13}+\frac{43\cdots 17}{28\cdots 35}a^{12}+\frac{14\cdots 51}{28\cdots 35}a^{11}+\frac{10\cdots 02}{28\cdots 35}a^{10}-\frac{11\cdots 42}{28\cdots 35}a^{9}-\frac{16\cdots 14}{28\cdots 35}a^{8}+\frac{43\cdots 82}{28\cdots 35}a^{7}-\frac{37\cdots 81}{28\cdots 35}a^{6}-\frac{63\cdots 47}{28\cdots 35}a^{5}+\frac{17\cdots 66}{28\cdots 35}a^{4}-\frac{26\cdots 49}{28\cdots 35}a^{3}-\frac{75\cdots 05}{56\cdots 47}a^{2}+\frac{10\cdots 81}{28\cdots 35}a+\frac{76\cdots 51}{33\cdots 15}$
|
| |
Regulator: | \( 1857575387.55 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 1857575387.55 \cdot 2}{2\cdot\sqrt{2200830136976503360666408203125}}\cr\approx \mathstrut & 0.499588720693 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6.\SD_{16}$ (as 16T1250):
A solvable group of order 1024 |
The 34 conjugacy class representatives for $C_2^6.\SD_{16}$ |
Character table for $C_2^6.\SD_{16}$ |
Intermediate fields
\(\Q(\sqrt{101}) \), 4.4.51005.1, 8.8.132690018825125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.8.88033205479060134426656328125.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | $16$ | R | $16$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
\(101\)
| 101.1.4.3a1.3 | $x^{4} + 404$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
101.1.4.3a1.3 | $x^{4} + 404$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
101.2.4.6a1.2 | $x^{8} + 388 x^{7} + 56462 x^{6} + 3653020 x^{5} + 88755121 x^{4} + 7306040 x^{3} + 225848 x^{2} + 3104 x + 117$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |