Normalized defining polynomial
\( x^{16} + 24x^{14} + 318x^{12} + 3240x^{10} + 24084x^{8} + 129708x^{6} + 505638x^{4} + 1268748x^{2} + 2007837 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1351639287558027493302608068608\)
\(\medspace = 2^{52}\cdot 3^{14}\cdot 13^{7}\)
|
| |
Root discriminant: | \(76.42\) |
| |
Galois root discriminant: | $2^{4}3^{7/8}13^{3/4}\approx 286.45644292474645$ | ||
Ramified primes: |
\(2\), \(3\), \(13\)
|
| |
Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.419853238272.1 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}$, $\frac{1}{3}a^{9}$, $\frac{1}{3}a^{10}$, $\frac{1}{3}a^{11}$, $\frac{1}{3}a^{12}$, $\frac{1}{3}a^{13}$, $\frac{1}{11\cdots 11}a^{14}-\frac{70138341611402}{857645186519847}a^{12}+\frac{18\cdots 18}{11\cdots 11}a^{10}+\frac{15\cdots 88}{11\cdots 11}a^{8}+\frac{293535673992708}{37\cdots 37}a^{6}-\frac{61682930987620}{37\cdots 37}a^{4}+\frac{139311998438200}{285881728839949}a^{2}+\frac{55667698301461}{285881728839949}$, $\frac{1}{14\cdots 41}a^{15}+\frac{41\cdots 18}{37\cdots 19}a^{13}-\frac{31\cdots 15}{14\cdots 41}a^{11}+\frac{36\cdots 87}{48\cdots 47}a^{9}+\frac{48\cdots 89}{48\cdots 47}a^{7}-\frac{96\cdots 82}{48\cdots 47}a^{5}+\frac{15\cdots 48}{37\cdots 19}a^{3}-\frac{11\cdots 99}{37\cdots 19}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{6}$, which has order $12$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{6}$, which has order $12$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{5569792741}{857645186519847}a^{14}+\frac{55305152806}{285881728839949}a^{12}+\frac{2239546808977}{857645186519847}a^{10}+\frac{21857987952413}{857645186519847}a^{8}+\frac{55918170038935}{285881728839949}a^{6}+\frac{285373807908727}{285881728839949}a^{4}+\frac{918946477766079}{285881728839949}a^{2}+\frac{18\cdots 23}{285881728839949}$, $\frac{17986629028}{857645186519847}a^{14}+\frac{522484090643}{857645186519847}a^{12}+\frac{7250220404176}{857645186519847}a^{10}+\frac{71730825662651}{857645186519847}a^{8}+\frac{178475098593086}{285881728839949}a^{6}+\frac{898917258882581}{285881728839949}a^{4}+\frac{28\cdots 14}{285881728839949}a^{2}+\frac{45\cdots 68}{285881728839949}$, $\frac{347208}{58666474213}a^{14}+\frac{19539929}{175999422639}a^{12}+\frac{80538248}{58666474213}a^{10}+\frac{787118928}{58666474213}a^{8}+\frac{4793859194}{58666474213}a^{6}+\frac{22641452897}{58666474213}a^{4}+\frac{61128806934}{58666474213}a^{2}-\frac{95684415101}{58666474213}$, $\frac{13\cdots 39}{14\cdots 41}a^{15}+\frac{12377850657212}{11\cdots 11}a^{14}+\frac{21\cdots 74}{11\cdots 57}a^{13}+\frac{21668045485265}{857645186519847}a^{12}+\frac{10\cdots 20}{48\cdots 47}a^{11}+\frac{35\cdots 35}{11\cdots 11}a^{10}+\frac{90\cdots 21}{48\cdots 47}a^{9}+\frac{34\cdots 33}{11\cdots 11}a^{8}+\frac{54\cdots 18}{48\cdots 47}a^{7}+\frac{78\cdots 10}{37\cdots 37}a^{6}+\frac{19\cdots 57}{48\cdots 47}a^{5}+\frac{37\cdots 69}{37\cdots 37}a^{4}+\frac{33\cdots 55}{37\cdots 19}a^{3}+\frac{91\cdots 28}{285881728839949}a^{2}+\frac{13\cdots 02}{37\cdots 19}a+\frac{12\cdots 59}{285881728839949}$, $\frac{36775631494063}{44\cdots 77}a^{15}-\frac{4011161613949}{11\cdots 11}a^{14}+\frac{44678351649698}{34\cdots 29}a^{13}-\frac{5289424142729}{857645186519847}a^{12}+\frac{67\cdots 05}{44\cdots 77}a^{11}-\frac{722119376775058}{11\cdots 11}a^{10}+\frac{60\cdots 32}{44\cdots 77}a^{9}-\frac{74\cdots 33}{11\cdots 11}a^{8}+\frac{36\cdots 02}{44\cdots 77}a^{7}-\frac{15\cdots 86}{37\cdots 37}a^{6}+\frac{16\cdots 97}{44\cdots 77}a^{5}-\frac{79\cdots 49}{37\cdots 37}a^{4}+\frac{34\cdots 08}{34\cdots 29}a^{3}-\frac{17\cdots 64}{285881728839949}a^{2}+\frac{68\cdots 57}{34\cdots 29}a-\frac{38\cdots 09}{285881728839949}$, $\frac{35\cdots 87}{48\cdots 47}a^{15}+\frac{184579987383455}{11\cdots 11}a^{14}+\frac{68\cdots 25}{37\cdots 19}a^{13}+\frac{293719434808192}{857645186519847}a^{12}+\frac{11\cdots 01}{48\cdots 47}a^{11}+\frac{42\cdots 47}{11\cdots 11}a^{10}+\frac{32\cdots 11}{14\cdots 41}a^{9}+\frac{37\cdots 69}{11\cdots 11}a^{8}+\frac{77\cdots 37}{48\cdots 47}a^{7}+\frac{75\cdots 37}{37\cdots 37}a^{6}+\frac{36\cdots 85}{48\cdots 47}a^{5}+\frac{26\cdots 52}{37\cdots 37}a^{4}+\frac{80\cdots 49}{37\cdots 19}a^{3}+\frac{38\cdots 75}{285881728839949}a^{2}+\frac{10\cdots 57}{37\cdots 19}a-\frac{18\cdots 00}{285881728839949}$, $\frac{16\cdots 43}{14\cdots 41}a^{15}-\frac{84350582511230}{11\cdots 11}a^{14}-\frac{414524688922350}{37\cdots 19}a^{13}-\frac{242527210261780}{857645186519847}a^{12}-\frac{32\cdots 88}{48\cdots 47}a^{11}-\frac{49\cdots 50}{11\cdots 11}a^{10}-\frac{12\cdots 69}{14\cdots 41}a^{9}-\frac{44\cdots 88}{11\cdots 11}a^{8}-\frac{29\cdots 46}{48\cdots 47}a^{7}-\frac{85\cdots 00}{37\cdots 37}a^{6}-\frac{13\cdots 19}{48\cdots 47}a^{5}-\frac{33\cdots 14}{37\cdots 37}a^{4}-\frac{28\cdots 97}{37\cdots 19}a^{3}-\frac{64\cdots 39}{285881728839949}a^{2}-\frac{47\cdots 86}{37\cdots 19}a-\frac{93\cdots 04}{285881728839949}$
|
| |
Regulator: | \( 51747484.1082 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 51747484.1082 \cdot 12}{2\cdot\sqrt{1351639287558027493302608068608}}\cr\approx \mathstrut & 0.648707671297 \end{aligned}\] (assuming GRH)
Galois group
$C_2^6.\SD_{16}$ (as 16T1250):
A solvable group of order 1024 |
The 34 conjugacy class representatives for $C_2^6.\SD_{16}$ |
Character table for $C_2^6.\SD_{16}$ |
Intermediate fields
\(\Q(\sqrt{3}) \), 4.4.7488.1, 8.0.419853238272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | $16$ | $16$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | $16$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.16.52e1.997 | $x^{16} + 8 x^{15} + 4 x^{14} + 2 x^{12} + 4 x^{10} + 8 x^{9} + 4 x^{6} + 8 x^{5} + 6$ | $16$ | $1$ | $52$ | 16T1250 | $$[2, 2, \frac{5}{2}, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, \frac{17}{4}]^{2}$$ |
\(3\)
| 3.2.8.14a1.3 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2051 x + 259$ | $8$ | $2$ | $14$ | 16T49 | $$[\ ]_{8}^{4}$$ |
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
13.1.4.3a1.1 | $x^{4} + 13$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |