Normalized defining polynomial
\( x^{9} - 3x^{8} - 117x^{7} - 1068x^{6} - 5292x^{5} - 15255x^{4} - 26055x^{3} - 25947x^{2} - 13932x - 3123 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[3, 3]$ |
| |
| Discriminant: |
\(-8666121461345916813504\)
\(\medspace = -\,2^{6}\cdot 3^{15}\cdot 7^{3}\cdot 31^{7}\)
|
| |
| Root discriminant: | \(273.86\) |
| |
| Galois root discriminant: | $2^{2/3}3^{31/18}7^{1/2}31^{5/6}\approx 487.24335268924307$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(31\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-651}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}$, $\frac{1}{21}a^{6}-\frac{2}{21}a^{5}-\frac{3}{7}a^{4}+\frac{3}{7}a^{3}-\frac{3}{7}a^{2}-\frac{3}{7}a+\frac{3}{7}$, $\frac{1}{21}a^{7}+\frac{1}{21}a^{5}-\frac{3}{7}a^{4}+\frac{3}{7}a^{3}-\frac{2}{7}a^{2}-\frac{3}{7}a-\frac{1}{7}$, $\frac{1}{21}a^{8}-\frac{1}{7}a^{4}+\frac{2}{7}a^{3}+\frac{2}{7}a-\frac{3}{7}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{819}$, which has order $2457$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{819}$, which has order $2457$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{8}-4a^{7}-113a^{6}-955a^{5}-4337a^{4}-10918a^{3}-15137a^{2}-10810a-3121$, $a^{8}-5a^{7}-107a^{6}-854a^{5}-3584a^{4}-8087a^{3}-9881a^{2}-6185a-1562$, $\frac{16}{21}a^{8}-\frac{62}{21}a^{7}-\frac{260}{3}a^{6}-\frac{5161}{7}a^{5}-\frac{23630}{7}a^{4}-8584a^{3}-\frac{84044}{7}a^{2}-\frac{60199}{7}a-2456$, $\frac{1}{3}a^{8}-\frac{11}{7}a^{7}-\frac{109}{3}a^{6}-\frac{2055}{7}a^{5}-\frac{8805}{7}a^{4}-\frac{20343}{7}a^{3}-\frac{25281}{7}a^{2}-\frac{15847}{7}a-\frac{3922}{7}$, $3a^{8}-\frac{99}{7}a^{7}-327a^{6}-\frac{18495}{7}a^{5}-\frac{79245}{7}a^{4}-\frac{183087}{7}a^{3}-\frac{227529}{7}a^{2}-\frac{142560}{7}a-\frac{35165}{7}$
|
| |
| Regulator: | \( 10197.25168202796 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 10197.25168202796 \cdot 2457}{2\cdot\sqrt{8666121461345916813504}}\cr\approx \mathstrut & 0.267039499565836 \end{aligned}\] (assuming GRH)
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.77841.2, 3.1.23436.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Minimal sibling: | 6.0.3092529594281904.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.3.0.1}{3} }^{3}$ | R | ${\href{/padicField/11.3.0.1}{3} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.3.0.1}{3} }^{3}$ | ${\href{/padicField/29.3.0.1}{3} }^{3}$ | R | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.3.0.1}{3} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.3.0.1}{3} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.3.6a1.1 | $x^{9} + 3 x^{7} + 3 x^{6} + 3 x^{5} + 6 x^{4} + 4 x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(3\)
| 3.1.9.15b2.9 | $x^{9} + 6 x^{8} + 6 x^{7} + 3 x^{3} + 21$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $$[\frac{3}{2}, 2]_{2}$$ |
|
\(7\)
| 7.3.1.0a1.1 | $x^{3} + 6 x^{2} + 4$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 7.3.2.3a1.2 | $x^{6} + 12 x^{5} + 36 x^{4} + 8 x^{3} + 48 x^{2} + 23$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(31\)
| 31.1.3.2a1.3 | $x^{3} + 279$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 31.1.6.5a1.5 | $x^{6} + 806$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |