Show commands: Magma
Group invariants
| Abstract group: | $S_3\times C_3$ |
| |
| Order: | $18=2 \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $9$ |
| |
| Transitive number $t$: | $4$ |
| |
| CHM label: | $S(3)[x]3$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,2,9)(3,4,5)(6,7,8)$, $(1,2)(4,5)(7,8)$, $(1,4,7)(2,5,8)(3,6,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Low degree siblings
6T5, 18T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{3},1^{3}$ | $3$ | $2$ | $3$ | $(2,9)(3,5)(6,8)$ |
| 3A1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,4,7)(2,5,8)(3,6,9)$ |
| 3A-1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,7,4)(2,8,5)(3,9,6)$ |
| 3B | $3^{3}$ | $2$ | $3$ | $6$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| 3C1 | $3^{3}$ | $2$ | $3$ | $6$ | $(1,5,6)(2,3,7)(4,8,9)$ |
| 3C-1 | $3^{3}$ | $2$ | $3$ | $6$ | $(1,8,3)(2,6,4)(5,9,7)$ |
| 6A1 | $6,3$ | $3$ | $6$ | $7$ | $(1,7,4)(2,6,5,9,8,3)$ |
| 6A-1 | $6,3$ | $3$ | $6$ | $7$ | $(1,4,7)(2,3,8,9,5,6)$ |
Malle's constant $a(G)$: $1/3$
Character table
| 1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 6A1 | 6A-1 | ||
| Size | 1 | 3 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 3A1 | 3A-1 | |
| 3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | |
| Type | ||||||||||
| 18.3.1a | R | |||||||||
| 18.3.1b | R | |||||||||
| 18.3.1c1 | C | |||||||||
| 18.3.1c2 | C | |||||||||
| 18.3.1d1 | C | |||||||||
| 18.3.1d2 | C | |||||||||
| 18.3.2a | R | |||||||||
| 18.3.2b1 | C | |||||||||
| 18.3.2b2 | C |
Regular extensions
| $f_{ 1 } =$ |
$x^{9} + \left(t^{2} + t + 7\right) x^{7} + \left(t^{2} + t + 4\right) x^{6} + \left(2 t^{2} + 2 t + 14\right) x^{5} + \left(2 t^{2} + 2 t + 14\right) x^{4} + \left(t^{2} + t + 10\right) x^{3} + \left(t^{2} + t + 7\right) x^{2} - 1$
|