Properties

Label 9T4
9T4 1 2 1->2 1->2 4 1->4 5 2->5 9 2->9 3 3->4 6 3->6 4->5 4->5 7 4->7 5->3 8 5->8 6->7 6->9 7->1 7->8 7->8 8->2 8->6 9->1 9->3
Degree $9$
Order $18$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $S_3\times C_3$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(9, 4);
 

Group invariants

Abstract group:  $S_3\times C_3$
Copy content magma:IdentifyGroup(G);
 
Order:  $18=2 \cdot 3^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $9$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $S(3)[x]3$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $3$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,9)(3,4,5)(6,7,8)$, $(1,2)(4,5)(7,8)$, $(1,4,7)(2,5,8)(3,6,9)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $S_3$, $C_6$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $C_3$, $S_3$

Low degree siblings

6T5, 18T3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{9}$ $1$ $1$ $0$ $()$
2A $2^{3},1^{3}$ $3$ $2$ $3$ $(2,9)(3,5)(6,8)$
3A1 $3^{3}$ $1$ $3$ $6$ $(1,4,7)(2,5,8)(3,6,9)$
3A-1 $3^{3}$ $1$ $3$ $6$ $(1,7,4)(2,8,5)(3,9,6)$
3B $3^{3}$ $2$ $3$ $6$ $(1,2,9)(3,4,5)(6,7,8)$
3C1 $3^{3}$ $2$ $3$ $6$ $(1,5,6)(2,3,7)(4,8,9)$
3C-1 $3^{3}$ $2$ $3$ $6$ $(1,8,3)(2,6,4)(5,9,7)$
6A1 $6,3$ $3$ $6$ $7$ $(1,7,4)(2,6,5,9,8,3)$
6A-1 $6,3$ $3$ $6$ $7$ $(1,4,7)(2,3,8,9,5,6)$

Malle's constant $a(G)$:     $1/3$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 3A1 3A-1 3B 3C1 3C-1 6A1 6A-1
Size 1 3 1 1 2 2 2 3 3
2 P 1A 1A 3A-1 3A1 3B 3C-1 3C1 3A1 3A-1
3 P 1A 2A 1A 1A 1A 1A 1A 2A 2A
Type
18.3.1a R 1 1 1 1 1 1 1 1 1
18.3.1b R 1 1 1 1 1 1 1 1 1
18.3.1c1 C 1 1 ζ31 ζ3 1 ζ31 ζ3 ζ3 ζ31
18.3.1c2 C 1 1 ζ3 ζ31 1 ζ3 ζ31 ζ31 ζ3
18.3.1d1 C 1 1 ζ31 ζ3 1 ζ31 ζ3 ζ3 ζ31
18.3.1d2 C 1 1 ζ3 ζ31 1 ζ3 ζ31 ζ31 ζ3
18.3.2a R 2 0 2 2 1 1 1 0 0
18.3.2b1 C 2 0 2ζ31 2ζ3 1 ζ31 ζ3 0 0
18.3.2b2 C 2 0 2ζ3 2ζ31 1 ζ3 ζ31 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{9} + \left(t^{2} + t + 7\right) x^{7} + \left(t^{2} + t + 4\right) x^{6} + \left(2 t^{2} + 2 t + 14\right) x^{5} + \left(2 t^{2} + 2 t + 14\right) x^{4} + \left(t^{2} + t + 10\right) x^{3} + \left(t^{2} + t + 7\right) x^{2} - 1$ Copy content Toggle raw display