Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $4$ | |
| Group : | $S_3\times C_3$ | |
| CHM label : | $S(3)[x]3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9)(3,4,5)(6,7,8), (1,2)(4,5)(7,8), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Low degree siblings
6T5, 18T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1 $ | $3$ | $2$ | $(2,9)(3,5)(6,8)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,3,8)(2,4,6)(5,7,9)$ |
| $ 6, 3 $ | $3$ | $6$ | $(1,3,7,9,4,6)(2,5,8)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,4,7)(2,5,8)(3,6,9)$ |
| $ 3, 3, 3 $ | $2$ | $3$ | $(1,6,5)(2,7,3)(4,9,8)$ |
| $ 6, 3 $ | $3$ | $6$ | $(1,6,4,9,7,3)(2,8,5)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,7,4)(2,8,5)(3,9,6)$ |
Group invariants
| Order: | $18=2 \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [18, 3] |
| Character table: |
2 1 1 . . 1 1 . 1 1
3 2 1 2 2 1 2 2 1 2
1a 2a 3a 3b 6a 3c 3d 6b 3e
2P 1a 1a 3a 3d 3e 3e 3b 3c 3c
3P 1a 2a 1a 1a 2a 1a 1a 2a 1a
5P 1a 2a 3a 3d 6b 3e 3b 6a 3c
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 1 -1 1
X.3 1 -1 1 A -A A /A -/A /A
X.4 1 -1 1 /A -/A /A A -A A
X.5 1 1 1 A A A /A /A /A
X.6 1 1 1 /A /A /A A A A
X.7 2 . -1 -1 . 2 -1 . 2
X.8 2 . -1 -/A . B -A . /B
X.9 2 . -1 -A . /B -/A . B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)
= -1+Sqrt(-3) = 2b3
|