Properties

Label 7.3.1.0a1.1
Base \(\Q_{7}\)
Degree \(3\)
e \(1\)
f \(3\)
c \(0\)
Galois group $C_3$ (as 3T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{3} + 6 x^{2} + 4\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $3$
Ramification index $e$: $1$
Residue field degree $f$: $3$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{7}$
Root number: $1$
$\Aut(K/\Q_{7})$ $=$$\Gal(K/\Q_{7})$: $C_3$
This field is Galois and abelian over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$342 = (7^{ 3 } - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 7 }$.

Canonical tower

Unramified subfield:7.3.1.0a1.1 $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{3} + 6 x^{2} + 4 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $3$
Galois group: $C_3$ (as 3T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $3$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{3} - 3 x - 1$