Normalized defining polynomial
\( x^{18} - 6 x^{17} - 159 x^{16} - 1410 x^{15} + 7527 x^{14} + 280182 x^{13} + 3597450 x^{12} + 30551556 x^{11} + 196786164 x^{10} + 1007188198 x^{9} + 4180850511 x^{8} + 14164032300 x^{7} + 38939538201 x^{6} + 85555837932 x^{5} + 145837576599 x^{4} + 183224962614 x^{3} + 156763071546 x^{2} + 80259221724 x + 18360337249 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2395667890070146411269283915935172526863463952384=-\,2^{12}\cdot 3^{31}\cdot 7^{9}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $487.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{54} a^{9} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} - \frac{7}{18} a^{4} + \frac{1}{18} a^{3} - \frac{1}{18} a^{2} + \frac{4}{9} a - \frac{1}{54}$, $\frac{1}{54} a^{10} + \frac{1}{9} a^{8} - \frac{1}{18} a^{7} + \frac{1}{9} a^{6} - \frac{1}{18} a^{5} - \frac{4}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{18} a^{2} - \frac{19}{54} a - \frac{1}{18}$, $\frac{1}{54} a^{11} - \frac{1}{18} a^{8} + \frac{1}{9} a^{7} - \frac{1}{18} a^{6} - \frac{1}{9} a^{5} - \frac{2}{9} a^{4} - \frac{7}{18} a^{3} + \frac{17}{54} a^{2} - \frac{7}{18} a + \frac{4}{9}$, $\frac{1}{378} a^{12} + \frac{1}{189} a^{11} + \frac{1}{189} a^{10} - \frac{1}{126} a^{9} + \frac{2}{63} a^{8} - \frac{5}{126} a^{7} + \frac{1}{21} a^{6} + \frac{4}{63} a^{5} - \frac{37}{126} a^{4} + \frac{149}{378} a^{3} - \frac{47}{378} a^{2} - \frac{37}{189} a + \frac{19}{63}$, $\frac{1}{378} a^{13} - \frac{1}{189} a^{11} - \frac{1}{126} a^{9} - \frac{10}{63} a^{8} - \frac{2}{21} a^{7} + \frac{5}{63} a^{6} - \frac{1}{7} a^{5} + \frac{10}{27} a^{4} - \frac{19}{63} a^{3} - \frac{32}{189} a^{2} - \frac{41}{126} a - \frac{17}{63}$, $\frac{1}{1134} a^{14} + \frac{1}{1134} a^{13} + \frac{1}{1134} a^{12} - \frac{5}{567} a^{11} - \frac{2}{567} a^{10} + \frac{5}{1134} a^{9} + \frac{29}{378} a^{8} + \frac{11}{378} a^{7} + \frac{19}{189} a^{6} - \frac{31}{1134} a^{5} - \frac{227}{567} a^{4} - \frac{65}{567} a^{3} + \frac{179}{567} a^{2} + \frac{158}{567} a + \frac{113}{567}$, $\frac{1}{175770} a^{15} - \frac{2}{29295} a^{14} + \frac{2}{1953} a^{13} - \frac{43}{35154} a^{12} + \frac{143}{58590} a^{11} + \frac{127}{19530} a^{10} - \frac{25}{35154} a^{9} + \frac{956}{9765} a^{8} - \frac{64}{465} a^{7} - \frac{1091}{12555} a^{6} + \frac{6961}{58590} a^{5} + \frac{1159}{19530} a^{4} - \frac{3988}{17577} a^{3} + \frac{968}{4185} a^{2} - \frac{7807}{19530} a - \frac{69841}{175770}$, $\frac{1}{60992190} a^{16} - \frac{1}{6099219} a^{15} - \frac{10307}{30496095} a^{14} - \frac{73}{64542} a^{13} + \frac{14027}{30496095} a^{12} + \frac{245978}{30496095} a^{11} - \frac{209642}{30496095} a^{10} - \frac{81442}{10165365} a^{9} - \frac{105556}{10165365} a^{8} + \frac{279047}{60992190} a^{7} + \frac{717691}{6099219} a^{6} - \frac{630742}{4356585} a^{5} - \frac{330994}{1452195} a^{4} + \frac{30291761}{60992190} a^{3} - \frac{26320351}{60992190} a^{2} - \frac{17048327}{60992190} a + \frac{479957}{1129485}$, $\frac{1}{2165121697208209866075985766032188976110} a^{17} - \frac{13590314431952738068447905776231}{2165121697208209866075985766032188976110} a^{16} - \frac{15372886342577792688388458837814}{10310103320039094600361836981105661791} a^{15} - \frac{569608219884522478991782469040055709}{2165121697208209866075985766032188976110} a^{14} + \frac{2708842759548445865228957675766353359}{2165121697208209866075985766032188976110} a^{13} + \frac{440639600128491812705798140578625727}{360853616201368311012664294338698162685} a^{12} - \frac{2615757892940003185069455244933075169}{2165121697208209866075985766032188976110} a^{11} + \frac{12663582603383295536774861125532049199}{2165121697208209866075985766032188976110} a^{10} + \frac{208034134838858252954002345702988361}{26729897496397652667604762543607271310} a^{9} - \frac{13090553554225413752293727625347923679}{433024339441641973215197153206437795222} a^{8} + \frac{28845058693588158298982858722123346425}{433024339441641973215197153206437795222} a^{7} + \frac{52460644888878294097150045879523334697}{721707232402736622025328588677396325370} a^{6} + \frac{18217138475676789664680725820480066497}{2165121697208209866075985766032188976110} a^{5} - \frac{297936030751788758119846471931812603421}{1082560848604104933037992883016094488055} a^{4} - \frac{71309227769683295415865726740396522782}{360853616201368311012664294338698162685} a^{3} - \frac{826352135702338241609603676038936119237}{2165121697208209866075985766032188976110} a^{2} + \frac{505482567894329802452384529402365060153}{2165121697208209866075985766032188976110} a + \frac{2439106590524380315525972027924606217}{40094846244596479001407143815410906965}$
Class group and class number
$C_{3}\times C_{1638}\times C_{219492}$, which has order $1078583688$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52651214.56199736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-651}) \), 3.1.23436.2 x3, 3.3.77841.2, 6.0.357559208496.1, Deg 6 x2, 6.0.193283099642619.2, 9.3.8666121461345916813504.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $31$ | 31.6.5.2 | $x^{6} - 1519$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 31.6.5.2 | $x^{6} - 1519$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.6.5.2 | $x^{6} - 1519$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |