Normalized defining polynomial
\( x^{9} - 12x^{6} - 61x^{3} - 64 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[3, 3]$ |
| |
| Discriminant: |
\(-45281702992707\)
\(\medspace = -\,3^{3}\cdot 109^{6}\)
|
| |
| Root discriminant: | \(32.91\) |
| |
| Galois root discriminant: | $3^{1/2}109^{2/3}\approx 39.52255016061654$ | ||
| Ramified primes: |
\(3\), \(109\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{6}a^{6}+\frac{1}{6}a^{4}+\frac{1}{6}a^{3}-\frac{1}{3}a^{2}-\frac{1}{6}a-\frac{1}{3}$, $\frac{1}{12}a^{7}-\frac{1}{6}a^{5}-\frac{1}{6}a^{4}+\frac{1}{3}a^{3}+\frac{1}{6}a^{2}+\frac{1}{12}a$, $\frac{1}{48}a^{8}+\frac{1}{12}a^{5}+\frac{1}{3}a^{3}+\frac{1}{16}a^{2}+\frac{1}{3}a-\frac{1}{3}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{24}a^{8}-\frac{1}{12}a^{7}+\frac{1}{6}a^{6}-\frac{2}{3}a^{5}+\frac{4}{3}a^{4}-\frac{5}{2}a^{3}-\frac{3}{8}a^{2}+\frac{17}{12}a-4$, $\frac{1}{4}a^{8}+\frac{1}{3}a^{6}-\frac{7}{2}a^{5}-\frac{1}{6}a^{4}-\frac{14}{3}a^{3}-\frac{101}{12}a^{2}+\frac{13}{6}a-\frac{35}{3}$, $\frac{4}{3}a^{8}+\frac{4}{3}a^{7}-\frac{1}{3}a^{6}-\frac{113}{6}a^{5}-\frac{37}{2}a^{4}+\frac{16}{3}a^{3}-\frac{247}{6}a^{2}-\frac{93}{2}a+\frac{1}{3}$, $\frac{9}{8}a^{8}+\frac{5}{12}a^{7}-\frac{7}{6}a^{6}-\frac{46}{3}a^{5}-6a^{4}+\frac{33}{2}a^{3}-\frac{1019}{24}a^{2}-\frac{197}{12}a+\frac{136}{3}$, $\frac{13}{2}a^{8}-\frac{25}{4}a^{7}-\frac{33}{2}a^{6}-\frac{177}{2}a^{5}+86a^{4}+\frac{451}{2}a^{3}-254a^{2}+\frac{921}{4}a+630$
|
| |
| Regulator: | \( 25902.399356 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 25902.399356 \cdot 1}{2\cdot\sqrt{45281702992707}}\cr\approx \mathstrut & 3.8192511268 \end{aligned}\]
Galois group
$C_3\times S_3$ (as 9T4):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3\times C_3$ |
| Character table for $S_3\times C_3$ |
Intermediate fields
| 3.3.11881.1, 3.1.35643.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.0.320787.3 |
| Minimal sibling: | 6.0.320787.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{3}{,}\,{\href{/padicField/2.1.0.1}{1} }^{3}$ | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.3.0.1}{3} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ | ${\href{/padicField/19.3.0.1}{3} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 3.3.2.3a1.2 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 4 x + 4$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(109\)
| 109.1.3.2a1.1 | $x^{3} + 109$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 109.1.3.2a1.1 | $x^{3} + 109$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 109.1.3.2a1.1 | $x^{3} + 109$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *18 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *18 | 1.109.3t1.a.a | $1$ | $ 109 $ | 3.3.11881.1 | $C_3$ (as 3T1) | $0$ | $1$ |
| 1.327.6t1.a.a | $1$ | $ 3 \cdot 109 $ | 6.0.3811270347.2 | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.327.6t1.a.b | $1$ | $ 3 \cdot 109 $ | 6.0.3811270347.2 | $C_6$ (as 6T1) | $0$ | $-1$ | |
| *18 | 1.109.3t1.a.b | $1$ | $ 109 $ | 3.3.11881.1 | $C_3$ (as 3T1) | $0$ | $1$ |
| *18 | 2.35643.3t2.a.a | $2$ | $ 3 \cdot 109^{2}$ | 3.1.35643.1 | $S_3$ (as 3T2) | $1$ | $0$ |
| *18 | 2.327.6t5.a.a | $2$ | $ 3 \cdot 109 $ | 9.3.45281702992707.2 | $S_3\times C_3$ (as 9T4) | $0$ | $0$ |
| *18 | 2.327.6t5.a.b | $2$ | $ 3 \cdot 109 $ | 9.3.45281702992707.2 | $S_3\times C_3$ (as 9T4) | $0$ | $0$ |