Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 216 x^{14} - 336 x^{13} + 646 x^{12} - 1770 x^{11} + 3810 x^{10} - 5256 x^{9} + 4284 x^{8} - 1248 x^{7} + 10297 x^{6} - 33069 x^{5} + 45543 x^{4} - 34668 x^{3} + 15516 x^{2} - 3888 x + 432 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-55361680899832712162570071923=-\,3^{9}\cdot 109^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{12} a^{3}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} + \frac{1}{6} a^{5} - \frac{1}{24} a^{4} - \frac{7}{24} a^{3} + \frac{1}{24} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} + \frac{1}{8} a^{5} + \frac{1}{6} a^{3} - \frac{11}{24} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{72} a^{12} - \frac{1}{72} a^{10} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} - \frac{1}{72} a^{6} + \frac{1}{6} a^{5} + \frac{1}{72} a^{4} - \frac{1}{3} a^{3} + \frac{1}{24} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{72} a^{13} - \frac{1}{72} a^{11} - \frac{1}{24} a^{9} - \frac{1}{72} a^{7} + \frac{1}{72} a^{5} - \frac{11}{24} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{144} a^{14} - \frac{1}{144} a^{13} - \frac{1}{144} a^{12} + \frac{1}{144} a^{11} - \frac{1}{48} a^{10} - \frac{1}{48} a^{9} + \frac{5}{144} a^{8} + \frac{1}{144} a^{7} - \frac{11}{144} a^{6} + \frac{35}{144} a^{5} - \frac{1}{16} a^{4} - \frac{11}{48} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{144} a^{15} + \frac{1}{72} a^{11} + \frac{1}{72} a^{9} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} + \frac{11}{72} a^{5} - \frac{17}{48} a^{3} - \frac{11}{24} a^{2} - \frac{1}{4} a$, $\frac{1}{5806368} a^{16} - \frac{1}{725796} a^{15} + \frac{4921}{1451592} a^{14} + \frac{985}{241932} a^{13} + \frac{505}{120966} a^{12} + \frac{7685}{1451592} a^{11} + \frac{3111}{322576} a^{10} - \frac{59833}{1451592} a^{9} + \frac{14273}{362898} a^{8} - \frac{1805}{80644} a^{7} - \frac{1873}{120966} a^{6} - \frac{70049}{1451592} a^{5} - \frac{807679}{5806368} a^{4} + \frac{64091}{161288} a^{3} + \frac{122513}{483864} a^{2} - \frac{9073}{20161} a + \frac{15597}{40322}$, $\frac{1}{1527074784} a^{17} + \frac{41}{509024928} a^{16} - \frac{190753}{63628116} a^{15} + \frac{17716}{5302343} a^{14} - \frac{893093}{381768696} a^{13} - \frac{529081}{381768696} a^{12} - \frac{3566761}{254512464} a^{11} - \frac{11129005}{763537392} a^{10} + \frac{1112401}{63628116} a^{9} + \frac{3443195}{127256232} a^{8} - \frac{8653603}{381768696} a^{7} + \frac{28315789}{381768696} a^{6} + \frac{271514453}{1527074784} a^{5} + \frac{222948239}{1527074784} a^{4} - \frac{1775163}{10604686} a^{3} - \frac{141721}{483864} a^{2} + \frac{2579262}{5302343} a - \frac{2795433}{10604686}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2576017}{190884348} a^{17} + \frac{43792289}{381768696} a^{16} - \frac{29863213}{63628116} a^{15} + \frac{467998805}{381768696} a^{14} - \frac{98153857}{42418744} a^{13} + \frac{650375479}{190884348} a^{12} - \frac{2698461893}{381768696} a^{11} + \frac{7799110231}{381768696} a^{10} - \frac{2632595045}{63628116} a^{9} + \frac{19374107713}{381768696} a^{8} - \frac{1416543739}{42418744} a^{7} + \frac{232617023}{190884348} a^{6} - \frac{53034517013}{381768696} a^{5} + \frac{11981669735}{31814058} a^{4} - \frac{2281197834}{5302343} a^{3} + \frac{21070857}{80644} a^{2} - \frac{464285620}{5302343} a + \frac{72369919}{5302343} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151363193.213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.35643.1 x3, 3.3.11881.1, 6.0.3811270347.1, 6.0.320787.3 x2, 6.0.3811270347.2, 9.3.45281702992707.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.320787.3 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $109$ | 109.3.2.1 | $x^{3} - 109$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 109.3.2.1 | $x^{3} - 109$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.3.2.1 | $x^{3} - 109$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.3.2.1 | $x^{3} - 109$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.3.2.1 | $x^{3} - 109$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 109.3.2.1 | $x^{3} - 109$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |