Normalized defining polynomial
\( x^{8} - 4x^{7} - 4x^{6} + 26x^{5} - 25x^{4} + 2x^{3} - 92x^{2} + 96x + 60 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[4, 2]$ |
| |
| Discriminant: |
\(1875745012656384\)
\(\medspace = 2^{8}\cdot 3^{4}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(81.12\) |
| |
| Galois root discriminant: | $2^{7/6}3^{1/2}67^{3/4}\approx 91.05805949783$ | ||
| Ramified primes: |
\(2\), \(3\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{6}a^{6}+\frac{1}{6}a^{4}-\frac{1}{3}a^{2}$, $\frac{1}{882}a^{7}+\frac{5}{63}a^{6}+\frac{31}{882}a^{5}+\frac{115}{882}a^{4}-\frac{94}{441}a^{3}-\frac{239}{882}a^{2}-\frac{24}{49}a-\frac{20}{147}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{13}{63}a^{7}-\frac{5}{9}a^{6}-\frac{101}{63}a^{5}+\frac{407}{126}a^{4}-\frac{50}{63}a^{3}-\frac{103}{126}a^{2}-\frac{141}{7}a-\frac{184}{21}$, $\frac{2083}{441}a^{7}-\frac{1579}{126}a^{6}-\frac{31819}{882}a^{5}+\frac{68813}{882}a^{4}-\frac{18955}{882}a^{3}-\frac{18764}{441}a^{2}-\frac{19624}{49}a-\frac{24961}{147}$, $\frac{14095}{441}a^{7}-\frac{4265}{63}a^{6}-\frac{136796}{441}a^{5}+\frac{252311}{882}a^{4}+\frac{139465}{441}a^{3}+\frac{897623}{882}a^{2}-\frac{51222}{49}a-\frac{92518}{147}$, $\frac{25441}{882}a^{7}-\frac{4948}{63}a^{6}-\frac{235331}{882}a^{5}+\frac{390259}{882}a^{4}+\frac{169874}{441}a^{3}+\frac{794203}{882}a^{2}-\frac{72417}{49}a-\frac{116624}{147}$, $\frac{745}{126}a^{7}-\frac{473}{18}a^{6}-\frac{769}{63}a^{5}+\frac{20197}{126}a^{4}-\frac{27605}{126}a^{3}+\frac{6281}{63}a^{2}-\frac{4006}{7}a+\frac{17629}{21}$
|
| |
| Regulator: | \( 667831.094125 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 667831.094125 \cdot 1}{2\cdot\sqrt{1875745012656384}}\cr\approx \mathstrut & 4.87000558636 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times S_4$ (as 8T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{201}) \), 4.2.43309872.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.0.3869015232.2, 6.2.57746496.1 |
| Degree 8 sibling: | 8.0.1875745012656384.15 |
| Degree 12 siblings: | deg 12, deg 12, deg 12, deg 12, deg 12, deg 12 |
| Degree 16 sibling: | deg 16 |
| Degree 24 siblings: | deg 24, deg 24, deg 24, deg 24 |
| Minimal sibling: | 6.2.57746496.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{4}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.4a1.1 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $$[\frac{4}{3}, \frac{4}{3}]_{3}^{2}$$ |
| 2.1.4.4a1.1 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $$[\frac{4}{3}, \frac{4}{3}]_{3}^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(67\)
| 67.2.4.6a1.2 | $x^{8} + 252 x^{7} + 23822 x^{6} + 1001700 x^{5} + 15848241 x^{4} + 2003400 x^{3} + 95288 x^{2} + 2016 x + 83$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |