Normalized defining polynomial
\( x^{8} - 32x^{5} + 240x^{3} - 320x^{2} + 120 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[4, 2]$ |
| |
Discriminant: |
\(1719926784000000\)
\(\medspace = 2^{24}\cdot 3^{8}\cdot 5^{6}\)
|
| |
Root discriminant: | \(80.25\) |
| |
Galois root discriminant: | $2^{51/16}3^{31/18}5^{13/10}\approx 489.6693764131204$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{6}a^{5}+\frac{1}{3}a^{2}$, $\frac{1}{12}a^{6}+\frac{1}{6}a^{3}$, $\frac{1}{36}a^{7}+\frac{1}{36}a^{6}-\frac{1}{18}a^{5}+\frac{2}{9}a^{4}+\frac{2}{9}a^{3}+\frac{2}{9}a^{2}-\frac{1}{3}a-\frac{1}{3}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{8}{3}a^{7}+\frac{15}{4}a^{6}+\frac{14}{3}a^{5}-\frac{242}{3}a^{4}-118a^{3}+\frac{1456}{3}a^{2}-123a-207$, $\frac{2}{3}a^{7}+\frac{2}{3}a^{6}+\frac{2}{3}a^{5}-\frac{115}{6}a^{4}-\frac{68}{3}a^{3}+\frac{385}{3}a^{2}-58a-67$, $\frac{1}{18}a^{7}-\frac{7}{36}a^{6}+\frac{7}{18}a^{5}-\frac{55}{18}a^{4}+\frac{161}{18}a^{3}-\frac{68}{9}a^{2}-\frac{8}{3}a+\frac{13}{3}$, $\frac{31}{18}a^{7}+\frac{47}{9}a^{6}+\frac{223}{18}a^{5}-\frac{553}{18}a^{4}-\frac{2227}{18}a^{3}+\frac{787}{9}a^{2}+\frac{82}{3}a+\frac{169}{3}$, $\frac{35}{18}a^{7}+\frac{91}{36}a^{6}+\frac{25}{9}a^{5}-\frac{1061}{18}a^{4}-\frac{1391}{18}a^{3}+\frac{3437}{9}a^{2}-\frac{349}{3}a-\frac{757}{3}$
|
| |
Regulator: | \( 153176.299992 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 153176.299992 \cdot 2}{2\cdot\sqrt{1719926784000000}}\cr\approx \mathstrut & 2.33300846380 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 20160 |
The 14 conjugacy class representatives for $A_8$ |
Character table for $A_8$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 15 siblings: | deg 15, deg 15 |
Degree 28 sibling: | deg 28 |
Degree 35 sibling: | deg 35 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.8.24b1.9 | $x^{8} + 4 x^{4} + 8 x + 2$ | $8$ | $1$ | $24$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$$ |
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
3.1.3.4a2.2 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
5.1.5.6a2.1 | $x^{5} + 5 x^{2} + 5$ | $5$ | $1$ | $6$ | $F_5$ | $$[\frac{3}{2}]_{2}^{2}$$ |