Normalized defining polynomial
\( x^{8} + 6x^{6} + 6x^{4} - 22x^{2} - 27 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[2, 3]$ |
| |
Discriminant: |
\(-50537889792\)
\(\medspace = -\,2^{16}\cdot 3^{3}\cdot 13^{4}\)
|
| |
Root discriminant: | \(21.77\) |
| |
Galois root discriminant: | $2^{5/2}3^{1/2}13^{1/2}\approx 35.32704346531139$ | ||
Ramified primes: |
\(2\), \(3\), \(13\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{6}a^{5}-\frac{1}{3}a^{3}+\frac{1}{6}a$, $\frac{1}{6}a^{6}+\frac{1}{6}a^{4}+\frac{1}{6}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{7}-\frac{1}{2}a^{3}+\frac{1}{3}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1}{6}a^{6}+\frac{2}{3}a^{4}-\frac{5}{6}a^{2}-2$, $\frac{1}{6}a^{7}+\frac{1}{6}a^{6}+\frac{1}{2}a^{5}+\frac{1}{6}a^{4}-\frac{1}{2}a^{3}+\frac{1}{6}a^{2}-\frac{1}{6}a+\frac{1}{2}$, $\frac{1}{6}a^{6}+\frac{7}{6}a^{4}+\frac{19}{6}a^{2}+\frac{5}{2}$, $\frac{1}{2}a^{7}+\frac{11}{6}a^{6}+\frac{2}{3}a^{5}+\frac{19}{3}a^{4}+\frac{7}{6}a^{3}-\frac{37}{6}a^{2}+\frac{2}{3}a-10$
|
| |
Regulator: | \( 818.264124546 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 818.264124546 \cdot 1}{2\cdot\sqrt{50537889792}}\cr\approx \mathstrut & 1.80573725969 \end{aligned}\]
Galois group
A solvable group of order 32 |
The 11 conjugacy class representatives for $Z_8 : Z_8^\times$ |
Character table for $Z_8 : Z_8^\times$ |
Intermediate fields
\(\Q(\sqrt{13}) \), 4.2.8112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 32 |
Degree 16 siblings: | deg 16, deg 16, deg 16, deg 16 |
Arithmetically equivalent sibling: | 8.2.50537889792.5 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }$ | R | ${\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.4.16b2.8 | $x^{8} + 4 x^{7} + 10 x^{6} + 16 x^{5} + 21 x^{4} + 24 x^{3} + 24 x^{2} + 20 x + 17$ | $4$ | $2$ | $16$ | $C_8:C_2$ | $$[2, 3, 3]^{2}$$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
\(13\)
| 13.4.2.4a1.2 | $x^{8} + 6 x^{6} + 24 x^{5} + 13 x^{4} + 72 x^{3} + 156 x^{2} + 48 x + 17$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.13.2t1.a.a | $1$ | $ 13 $ | \(\Q(\sqrt{13}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.104.2t1.b.a | $1$ | $ 2^{3} \cdot 13 $ | \(\Q(\sqrt{-26}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.312.2t1.a.a | $1$ | $ 2^{3} \cdot 3 \cdot 13 $ | \(\Q(\sqrt{78}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.24.2t1.a.a | $1$ | $ 2^{3} \cdot 3 $ | \(\Q(\sqrt{6}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.39.2t1.a.a | $1$ | $ 3 \cdot 13 $ | \(\Q(\sqrt{-39}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.624.4t3.a.a | $2$ | $ 2^{4} \cdot 3 \cdot 13 $ | 4.2.8112.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
2.2496.4t3.h.a | $2$ | $ 2^{6} \cdot 3 \cdot 13 $ | 4.2.32448.2 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
* | 4.6230016.8t15.d.a | $4$ | $ 2^{12} \cdot 3^{2} \cdot 13^{2}$ | 8.2.50537889792.2 | $Z_8 : Z_8^\times$ (as 8T15) | $1$ | $0$ |