Normalized defining polynomial
\( x^{8} - 48x^{3} + 360 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[0, 4]$ |
| |
Discriminant: |
\(68797071360000\)
\(\medspace = 2^{24}\cdot 3^{8}\cdot 5^{4}\)
|
| |
Root discriminant: | \(53.67\) |
| |
Galois root discriminant: | $2^{51/16}3^{8/5}5^{2/3}\approx 154.49240061856077$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{6}a^{5}$, $\frac{1}{60}a^{6}-\frac{1}{15}a^{5}+\frac{1}{5}a^{4}-\frac{1}{5}a^{3}$, $\frac{1}{300}a^{7}-\frac{1}{150}a^{6}+\frac{1}{75}a^{5}+\frac{7}{50}a^{4}+\frac{11}{50}a^{3}+\frac{2}{5}a^{2}+\frac{1}{5}a-\frac{2}{5}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{47}{100}a^{7}+\frac{23}{300}a^{6}-\frac{38}{25}a^{5}+\frac{97}{50}a^{4}-\frac{467}{25}a^{3}-\frac{88}{5}a^{2}-\frac{404}{5}a-\frac{47}{5}$, $\frac{37}{20}a^{7}+\frac{41}{10}a^{6}+\frac{111}{5}a^{5}+\frac{713}{10}a^{4}+115a^{3}-53a^{2}-312a-617$, $\frac{8788}{75}a^{7}-\frac{96839}{300}a^{6}+\frac{33583}{50}a^{5}-\frac{24903}{25}a^{4}+\frac{12496}{25}a^{3}-\frac{12636}{5}a^{2}+\frac{3952}{5}a+\frac{48631}{5}$
|
| |
Regulator: | \( 13454.0135384 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 13454.0135384 \cdot 2}{2\cdot\sqrt{68797071360000}}\cr\approx \mathstrut & 2.52805406932 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 20160 |
The 14 conjugacy class representatives for $A_8$ |
Character table for $A_8$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 15 siblings: | deg 15, deg 15 |
Degree 28 sibling: | deg 28 |
Degree 35 sibling: | deg 35 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.8.24b1.5 | $x^{8} + 8 x + 10$ | $8$ | $1$ | $24$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$$ |
\(3\)
| 3.1.3.4a1.1 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $$[2]^{2}$$ |
3.1.5.4a1.1 | $x^{5} + 3$ | $5$ | $1$ | $4$ | $F_5$ | $$[\ ]_{5}^{4}$$ | |
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |