Normalized defining polynomial
\( x^{8} - 2x^{7} + 17x^{6} - 37x^{5} + 99x^{4} - 158x^{3} + 158x^{2} - 75x + 74 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[0, 4]$ |
| |
Discriminant: |
\(58451728309129\)
\(\medspace = 197^{6}\)
|
| |
Root discriminant: | \(52.58\) |
| |
Galois root discriminant: | $197^{6/7}\approx 92.61585422390594$ | ||
Ramified primes: |
\(197\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{35543}a^{7}-\frac{15648}{35543}a^{6}+\frac{8441}{35543}a^{5}+\frac{9865}{35543}a^{4}+\frac{15558}{35543}a^{3}+\frac{13381}{35543}a^{2}-\frac{10698}{35543}a+\frac{8846}{35543}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{7972}{35543}a^{7}+\frac{10074}{35543}a^{6}+\frac{150925}{35543}a^{5}+\frac{93750}{35543}a^{4}+\frac{729709}{35543}a^{3}+\frac{79875}{35543}a^{2}+\frac{374174}{35543}a-\frac{32543}{35543}$, $\frac{888839}{35543}a^{7}-\frac{2282836}{35543}a^{6}+\frac{10545486}{35543}a^{5}-\frac{31268119}{35543}a^{4}+\frac{45834794}{35543}a^{3}-\frac{36240033}{35543}a^{2}+\frac{23584177}{35543}a-\frac{14049979}{35543}$, $\frac{19965}{35543}a^{7}+\frac{10650}{35543}a^{6}+\frac{50745}{35543}a^{5}+\frac{259763}{35543}a^{4}-\frac{563495}{35543}a^{3}+\frac{756880}{35543}a^{2}-\frac{292027}{35543}a+\frac{423739}{35543}$
|
| |
Regulator: | \( 9937.30836324 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 9937.30836324 \cdot 1}{2\cdot\sqrt{58451728309129}}\cr\approx \mathstrut & 1.01288366178 \end{aligned}\]
Galois group
A solvable group of order 56 |
The 8 conjugacy class representatives for $C_2^3:C_7$ |
Character table for $C_2^3:C_7$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 14 sibling: | deg 14 |
Degree 28 sibling: | deg 28 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(197\)
| $\Q_{197}$ | $x + 195$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
197.1.7.6a1.1 | $x^{7} + 197$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.197.7t1.a.a | $1$ | $ 197 $ | 7.7.58451728309129.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.197.7t1.a.b | $1$ | $ 197 $ | 7.7.58451728309129.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.197.7t1.a.c | $1$ | $ 197 $ | 7.7.58451728309129.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.197.7t1.a.d | $1$ | $ 197 $ | 7.7.58451728309129.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.197.7t1.a.e | $1$ | $ 197 $ | 7.7.58451728309129.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.197.7t1.a.f | $1$ | $ 197 $ | 7.7.58451728309129.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
* | 7.584...129.8t25.a.a | $7$ | $ 197^{6}$ | 8.0.58451728309129.1 | $C_2^3:C_7$ (as 8T25) | $1$ | $-1$ |