Normalized defining polynomial
\( x^{8} - 2x^{7} + 2x^{6} + 52x^{5} + 269x^{4} + 326x^{3} + 162x^{2} - 180x + 100 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(524698762940416\)
\(\medspace = 2^{12}\cdot 71^{6}\)
|
| |
| Root discriminant: | \(69.18\) |
| |
| Galois root discriminant: | $2^{2}71^{3/4}\approx 97.83714091452357$ | ||
| Ramified primes: |
\(2\), \(71\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-1}) \), 6.0.26021561344.5$^{3}$, 8.0.524698762940416.8$^{4}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{11380130}a^{7}-\frac{285671}{5690065}a^{6}+\frac{1444681}{5690065}a^{5}+\frac{2476451}{5690065}a^{4}+\frac{3477519}{11380130}a^{3}-\frac{94282}{5690065}a^{2}-\frac{767394}{5690065}a+\frac{123872}{1138013}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{4}\times C_{8}$, which has order $32$ |
| |
| Narrow class group: | $C_{4}\times C_{8}$, which has order $32$ |
| |
| Relative class number: | $32$ |
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{37287}{11380130} a^{7} + \frac{12897}{5690065} a^{6} + \frac{24908}{5690065} a^{5} - \frac{1053617}{5690065} a^{4} - \frac{12429863}{11380130} a^{3} - \frac{12347366}{5690065} a^{2} - \frac{7206872}{5690065} a + \frac{379503}{1138013} \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{34479}{11380130}a^{7}-\frac{147894}{5690065}a^{6}+\frac{327189}{5690065}a^{5}+\frac{438639}{5690065}a^{4}+\frac{327921}{11380130}a^{3}-\frac{1721963}{5690065}a^{2}-\frac{175476}{5690065}a+\frac{19899}{1138013}$, $\frac{129017}{2276026}a^{7}-\frac{314765}{2276026}a^{6}+\frac{87385}{1138013}a^{5}+\frac{3714878}{1138013}a^{4}+\frac{29307937}{2276026}a^{3}+\frac{19826547}{2276026}a^{2}-\frac{9982815}{1138013}a+\frac{4662351}{1138013}$, $\frac{6631424}{5690065}a^{7}-\frac{20289891}{11380130}a^{6}+\frac{7572178}{5690065}a^{5}+\frac{349636588}{5690065}a^{4}+\frac{1948684946}{5690065}a^{3}+\frac{6072997883}{11380130}a^{2}+\frac{2242553128}{5690065}a-\frac{117589372}{1138013}$
|
| |
| Regulator: | \( 2444.99615299 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 2444.99615299 \cdot 32}{4\cdot\sqrt{524698762940416}}\cr\approx \mathstrut & 1.33086076060 \end{aligned}\]
Galois group
$C_2\times S_4$ (as 8T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.4.2863288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.0.26021561344.5, 6.0.733001728.2 |
| Degree 8 sibling: | 8.0.2098795051761664.4 |
| Degree 12 siblings: | deg 12, deg 12, deg 12, deg 12, deg 12, deg 12 |
| Degree 16 sibling: | deg 16 |
| Degree 24 siblings: | deg 24, deg 24, deg 24, deg 24 |
| Minimal sibling: | 6.0.733001728.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ | ${\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{4}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.8b1.2 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ |
| 2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ | |
|
\(71\)
| 71.2.4.6a1.2 | $x^{8} + 276 x^{7} + 28594 x^{6} + 1319832 x^{5} + 23067339 x^{4} + 9238824 x^{3} + 1401106 x^{2} + 94668 x + 2472$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |