Normalized defining polynomial
\( x^{8} + 44x^{6} + 513x^{4} + 2058x^{2} + 2500 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(2098795051761664\)
\(\medspace = 2^{14}\cdot 71^{6}\)
|
| |
| Root discriminant: | \(82.27\) |
| |
| Galois root discriminant: | $2^{2}71^{3/4}\approx 97.83714091452357$ | ||
| Ramified primes: |
\(2\), \(71\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-142}) \), 6.0.733001728.2$^{3}$, 8.0.2098795051761664.4$^{4}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{244}a^{6}+\frac{51}{244}a^{4}-\frac{53}{122}a^{2}+\frac{24}{61}$, $\frac{1}{12200}a^{7}-\frac{1}{488}a^{6}-\frac{681}{12200}a^{5}-\frac{51}{488}a^{4}-\frac{2981}{6100}a^{3}-\frac{69}{244}a^{2}+\frac{1427}{3050}a+\frac{37}{122}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{8}$, which has order $16$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{8}$, which has order $16$ (assuming GRH) |
| |
| Relative class number: | $16$ (assuming GRH) |
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3}{244}a^{6}+\frac{153}{244}a^{4}+\frac{451}{122}a^{2}+\frac{316}{61}$, $\frac{15}{122}a^{6}+\frac{291}{61}a^{4}+\frac{4937}{122}a^{2}+\frac{4136}{61}$, $\frac{44}{61}a^{6}+\frac{3695}{122}a^{4}+\frac{37215}{122}a^{2}+\frac{49791}{61}$
|
| |
| Regulator: | \( 2444.99615299 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 2444.99615299 \cdot 16}{2\cdot\sqrt{2098795051761664}}\cr\approx \mathstrut & 0.665430380302 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times S_4$ (as 8T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-142}) \), 4.4.2863288.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.0.26021561344.5, 6.0.733001728.2 |
| Degree 8 sibling: | 8.0.524698762940416.8 |
| Degree 12 siblings: | deg 12, deg 12, deg 12, deg 12, deg 12, deg 12 |
| Degree 16 sibling: | deg 16 |
| Degree 24 siblings: | deg 24, deg 24, deg 24, deg 24 |
| Minimal sibling: | 6.0.733001728.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.8b1.6 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ |
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(71\)
| 71.1.4.3a1.1 | $x^{4} + 71$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |
| 71.1.4.3a1.1 | $x^{4} + 71$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |