Normalized defining polynomial
\( x^{8} + 60060x^{6} + 644143500x^{4} + 1934362930500x^{2} + 115255791275625 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(376062329161459653672960000\)
\(\medspace = 2^{24}\cdot 3^{6}\cdot 5^{4}\cdot 7^{6}\cdot 11^{4}\cdot 13^{4}\)
|
| |
| Root discriminant: | \(2098.49\) |
| |
| Galois root discriminant: | $2^{3}3^{3/4}5^{1/2}7^{3/4}11^{1/2}13^{1/2}\approx 2098.4927781207075$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\), \(11\), \(13\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $Q_8$ |
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{8}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{715}a^{2}$, $\frac{1}{715}a^{3}$, $\frac{1}{10735725}a^{4}$, $\frac{1}{10735725}a^{5}$, $\frac{1}{1097674202625}a^{6}+\frac{2}{219315525}a^{4}+\frac{61}{102245}a^{2}-\frac{14}{143}$, $\frac{1}{1097674202625}a^{7}+\frac{2}{219315525}a^{5}+\frac{61}{102245}a^{3}-\frac{14}{143}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{188}\times C_{188}$, which has order $144769024$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{188}\times C_{188}$, which has order $144769024$ (assuming GRH) |
| |
| Relative class number: | $72384512$ (assuming GRH) |
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2}{1097674202625}a^{6}-\frac{57}{511736225}a^{4}-\frac{122}{102245}a^{2}-\frac{544}{143}$, $\frac{6}{365891400875}a^{6}+\frac{1396}{1535208675}a^{4}+\frac{669}{102245}a^{2}+\frac{1464}{143}$, $\frac{4}{219534840525}a^{6}+\frac{1567}{1535208675}a^{4}+\frac{791}{102245}a^{2}+\frac{1579}{143}$
|
| |
| Regulator: | \( 116.6588945460986 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 116.6588945460986 \cdot 144769024}{2\cdot\sqrt{376062329161459653672960000}}\cr\approx \mathstrut & 0.678661269644970 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $Q_8$ |
| Character table for $Q_8$ |
Intermediate fields
| \(\Q(\sqrt{42}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{3}, \sqrt{14})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | R | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.24c1.45 | $x^{8} + 4 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 6$ | $8$ | $1$ | $24$ | $Q_8$ | $$[2, 3, 4]$$ |
|
\(3\)
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ |
|
\(5\)
| 5.2.2.2a1.1 | $x^{4} + 8 x^{3} + 20 x^{2} + 21 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 5.2.2.2a1.1 | $x^{4} + 8 x^{3} + 20 x^{2} + 21 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
|
\(7\)
| 7.2.4.6a1.3 | $x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2646 x^{4} + 3240 x^{3} + 2052 x^{2} + 655 x + 109$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ |
|
\(11\)
| 11.1.2.1a1.2 | $x^{2} + 22$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 11.1.2.1a1.2 | $x^{2} + 22$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.1.2.1a1.2 | $x^{2} + 22$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 11.1.2.1a1.2 | $x^{2} + 22$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(13\)
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |