Normalized defining polynomial
\( x^{8} - 8x^{6} + 24x^{4} - 32x^{2} + 18 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[0, 4]$ |
| |
Discriminant: |
\(2147483648\)
\(\medspace = 2^{31}\)
|
| |
Root discriminant: | \(14.67\) |
| |
Galois root discriminant: | $2^{67/16}\approx 18.220618156107065$ | ||
Ramified primes: |
\(2\)
|
| |
Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-2}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a^{6}-5a^{4}+8a^{2}-5$, $a^{5}-a^{4}-5a^{3}+5a^{2}+6a-7$, $\frac{1}{3}a^{7}-\frac{5}{3}a^{5}+a^{4}+3a^{3}-3a^{2}-\frac{2}{3}a+3$
|
| |
Regulator: | \( 109.937009662 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 109.937009662 \cdot 1}{2\cdot\sqrt{2147483648}}\cr\approx \mathstrut & 1.84870861377 \end{aligned}\]
Galois group
$C_4\wr C_2$ (as 8T17):
A solvable group of order 32 |
The 14 conjugacy class representatives for $C_4\wr C_2$ |
Character table for $C_4\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), 4.0.2048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 8 sibling: | data not computed |
Degree 16 siblings: | 16.0.18446744073709551616.5, 16.4.73786976294838206464.9 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{4}$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.8.31a1.4 | $x^{8} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_4\wr C_2$ | $$[2, 3, \frac{7}{2}, 4, 5]$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.8.2t1.a.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{2}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.16.4t1.a.a | $1$ | $ 2^{4}$ | \(\Q(\zeta_{16})^+\) | $C_4$ (as 4T1) | $0$ | $1$ | |
1.16.4t1.a.b | $1$ | $ 2^{4}$ | \(\Q(\zeta_{16})^+\) | $C_4$ (as 4T1) | $0$ | $1$ | |
1.16.4t1.b.a | $1$ | $ 2^{4}$ | 4.0.2048.2 | $C_4$ (as 4T1) | $0$ | $-1$ | |
1.16.4t1.b.b | $1$ | $ 2^{4}$ | 4.0.2048.2 | $C_4$ (as 4T1) | $0$ | $-1$ | |
2.128.4t3.c.a | $2$ | $ 2^{7}$ | 4.2.1024.1 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
* | 2.256.4t3.c.a | $2$ | $ 2^{8}$ | 4.2.2048.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
* | 2.1024.8t17.a.a | $2$ | $ 2^{10}$ | 8.0.2147483648.5 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |
2.1024.8t17.b.a | $2$ | $ 2^{10}$ | 8.0.2147483648.5 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ | |
* | 2.1024.8t17.a.b | $2$ | $ 2^{10}$ | 8.0.2147483648.5 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |
2.1024.8t17.b.b | $2$ | $ 2^{10}$ | 8.0.2147483648.5 | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |