Normalized defining polynomial
\( x^{8} - 3x^{7} - 21x^{6} + 72x^{5} + 548x^{4} - 5112x^{3} + 19563x^{2} - 39405x + 34225 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(183178223892225\)
\(\medspace = 3^{4}\cdot 5^{2}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(60.65\) |
| |
| Galois root discriminant: | $3^{1/2}5^{1/2}67^{3/4}\approx 90.69883977059361$ | ||
| Ramified primes: |
\(3\), \(5\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}, \sqrt{-67})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{10}a^{5}-\frac{1}{5}a^{4}+\frac{1}{10}a^{2}+\frac{2}{5}a$, $\frac{1}{20}a^{6}-\frac{1}{5}a^{4}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{1}{4}$, $\frac{1}{101259380}a^{7}-\frac{2002813}{101259380}a^{6}+\frac{66493}{25314845}a^{5}+\frac{3491264}{25314845}a^{4}+\frac{1459972}{25314845}a^{3}+\frac{10467724}{25314845}a^{2}-\frac{7103225}{20251876}a-\frac{169915}{547348}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{32111}{50629690} a^{7} - \frac{70959}{101259380} a^{6} + \frac{601811}{50629690} a^{5} + \frac{314083}{50629690} a^{4} - \frac{17586653}{50629690} a^{3} + \frac{91776657}{50629690} a^{2} - \frac{106718459}{25314845} a + \frac{2403957}{547348} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{270871}{101259380}a^{7}-\frac{442201}{25314845}a^{6}-\frac{973629}{50629690}a^{5}+\frac{3151631}{5062969}a^{4}-\frac{85440482}{25314845}a^{3}+\frac{99632575}{10125938}a^{2}-\frac{1619284923}{101259380}a+\frac{1490744}{136837}$, $\frac{18634449}{50629690}a^{7}-\frac{45951393}{101259380}a^{6}-\frac{480926107}{50629690}a^{5}+\frac{375069277}{50629690}a^{4}+\frac{2355070481}{10125938}a^{3}-\frac{71568974553}{50629690}a^{2}+\frac{105003237662}{25314845}a-\frac{2625967145}{547348}$, $\frac{17\cdots 71}{101259380}a^{7}-\frac{43\cdots 71}{50629690}a^{6}-\frac{19\cdots 29}{50629690}a^{5}+\frac{54\cdots 18}{25314845}a^{4}+\frac{25\cdots 41}{25314845}a^{3}-\frac{31\cdots 09}{50629690}a^{2}+\frac{17\cdots 33}{101259380}a-\frac{60\cdots 85}{273674}$
|
| |
| Regulator: | \( 41731.4122741 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 41731.4122741 \cdot 1}{6\cdot\sqrt{183178223892225}}\cr\approx \mathstrut & 0.800929672508 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times D_4$ (as 8T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{201}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-67}) \), 4.2.13534335.1, 4.2.13534335.2, \(\Q(\sqrt{-3}, \sqrt{-67})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 16 |
| Degree 8 siblings: | 8.0.508828399700625.1, 8.0.4579455597305625.15, 8.4.4579455597305625.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{4}$ | R | R | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(67\)
| 67.1.4.3a1.1 | $x^{4} + 67$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |
| 67.1.4.3a1.1 | $x^{4} + 67$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |