Normalized defining polynomial
\( x^{8} - x^{7} - 2x^{6} - 143x^{5} + 516x^{4} - 733x^{3} + 2136x^{2} - 3095x + 1542 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(11847252093276889\)
\(\medspace = 37^{4}\cdot 43^{6}\)
|
| |
| Root discriminant: | \(102.14\) |
| |
| Galois root discriminant: | $37^{1/2}43^{6/7}\approx 152.83283918504304$ | ||
| Ramified primes: |
\(37\), \(43\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{190810313}a^{7}+\frac{359133}{190810313}a^{6}-\frac{10900768}{190810313}a^{5}+\frac{18776766}{190810313}a^{4}-\frac{52190573}{190810313}a^{3}+\frac{78611788}{190810313}a^{2}+\frac{62772561}{190810313}a+\frac{94869068}{190810313}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2558254}{190810313}a^{7}+\frac{1776687}{190810313}a^{6}-\frac{6094122}{190810313}a^{5}-\frac{377950560}{190810313}a^{4}+\frac{675468765}{190810313}a^{3}+\frac{3074603}{190810313}a^{2}+\frac{4103950824}{190810313}a-\frac{2958984643}{190810313}$, $\frac{6988890}{190810313}a^{7}+\frac{22175168}{190810313}a^{6}-\frac{7226949}{190810313}a^{5}-\frac{849825697}{190810313}a^{4}+\frac{537889647}{190810313}a^{3}-\frac{2634614673}{190810313}a^{2}+\frac{5558127706}{190810313}a-\frac{3346836331}{190810313}$, $\frac{1139023434}{190810313}a^{7}-\frac{3016344503}{190810313}a^{6}-\frac{22054700275}{190810313}a^{5}+\frac{80055908498}{190810313}a^{4}-\frac{123192864441}{190810313}a^{3}+\frac{383554193946}{190810313}a^{2}-\frac{543753090209}{190810313}a+\frac{262234492217}{190810313}$
|
| |
| Regulator: | \( 16357.3616186 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 16357.3616186 \cdot 8}{2\cdot\sqrt{11847252093276889}}\cr\approx \mathstrut & 0.936879863713 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 56 |
| The 8 conjugacy class representatives for $C_2^3:C_7$ |
| Character table for $C_2^3:C_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | deg 14 |
| Degree 28 sibling: | deg 28 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | R | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | R | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(37\)
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(43\)
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 43.1.7.6a1.1 | $x^{7} + 43$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.43.7t1.a.a | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.b | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.c | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.d | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.e | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.43.7t1.a.f | $1$ | $ 43 $ | 7.7.6321363049.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
| * | 7.118...889.8t25.a.a | $7$ | $ 37^{4} \cdot 43^{6}$ | 8.0.11847252093276889.1 | $C_2^3:C_7$ (as 8T25) | $1$ | $-1$ |