Normalized defining polynomial
\( x^{8} - x^{7} + 41x^{6} - 98x^{5} + 411x^{4} - 2087x^{3} + 7263x^{2} - 8915x + 6934 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[0, 4]$ |
| |
Discriminant: |
\(10699063813365841\)
\(\medspace = 17^{4}\cdot 71^{6}\)
|
| |
Root discriminant: | \(100.85\) |
| |
Galois root discriminant: | $17^{1/2}71^{6/7}\approx 159.2272267235735$ | ||
Ramified primes: |
\(17\), \(71\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{17}a^{6}-\frac{5}{17}a^{5}+\frac{6}{17}a^{4}-\frac{4}{17}a^{2}+\frac{3}{17}a+\frac{8}{17}$, $\frac{1}{5745631831}a^{7}+\frac{12562096}{5745631831}a^{6}+\frac{800345223}{5745631831}a^{5}+\frac{186636603}{5745631831}a^{4}-\frac{2571143924}{5745631831}a^{3}+\frac{796710996}{5745631831}a^{2}-\frac{224812644}{5745631831}a-\frac{1624706253}{5745631831}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{2684806373}{5745631831}a^{7}-\frac{7344527254}{5745631831}a^{6}+\frac{103972111017}{5745631831}a^{5}-\frac{451576880457}{5745631831}a^{4}+\frac{1131941423598}{5745631831}a^{3}-\frac{6784701283181}{5745631831}a^{2}+\frac{25802984068608}{5745631831}a-\frac{38391724281253}{5745631831}$, $\frac{3263221}{337978343}a^{7}+\frac{39037879}{337978343}a^{6}+\frac{47732558}{337978343}a^{5}+\frac{363078660}{337978343}a^{4}-\frac{1227260476}{337978343}a^{3}+\frac{5352430853}{337978343}a^{2}-\frac{11486286903}{337978343}a+\frac{41596754957}{337978343}$, $\frac{8088434519}{5745631831}a^{7}+\frac{8775584323}{5745631831}a^{6}+\frac{335888645586}{5745631831}a^{5}-\frac{156166929322}{5745631831}a^{4}+\frac{2254295785441}{5745631831}a^{3}-\frac{14265160575307}{5745631831}a^{2}+\frac{20779223313028}{5745631831}a-\frac{26343032003141}{5745631831}$
|
| |
Regulator: | \( 15761.2152227 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 15761.2152227 \cdot 8}{2\cdot\sqrt{10699063813365841}}\cr\approx \mathstrut & 0.949940218749 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 56 |
The 8 conjugacy class representatives for $C_2^3:C_7$ |
Character table for $C_2^3:C_7$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 14 sibling: | deg 14 |
Degree 28 sibling: | deg 28 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.7.0.1}{7} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | R | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\)
| 17.2.2.2a1.2 | $x^{4} + 32 x^{3} + 262 x^{2} + 96 x + 26$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
17.2.2.2a1.2 | $x^{4} + 32 x^{3} + 262 x^{2} + 96 x + 26$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(71\)
| $\Q_{71}$ | $x + 64$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
71.1.7.6a1.1 | $x^{7} + 71$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.71.7t1.a.a | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.71.7t1.a.b | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.71.7t1.a.c | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.71.7t1.a.d | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.71.7t1.a.e | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
1.71.7t1.a.f | $1$ | $ 71 $ | 7.7.128100283921.1 | $C_7$ (as 7T1) | $0$ | $1$ | |
* | 7.106...841.8t25.a.a | $7$ | $ 17^{4} \cdot 71^{6}$ | 8.0.10699063813365841.1 | $C_2^3:C_7$ (as 8T25) | $1$ | $-1$ |