Normalized defining polynomial
\( x^{7} - x^{6} - 7x^{5} - 7x^{4} + 27x^{3} + 69x^{2} - 189x + 171 \)
Invariants
| Degree: | $7$ |
| |
| Signature: | $[3, 2]$ |
| |
| Discriminant: |
\(139012099200\)
\(\medspace = 2^{7}\cdot 3^{2}\cdot 5^{2}\cdot 13^{6}\)
|
| |
| Root discriminant: | \(39.07\) |
| |
| Galois root discriminant: | $2^{13/6}3^{1/2}5^{2/3}13^{6/7}\approx 204.91836176274478$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(13\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{12}a^{5}-\frac{1}{12}a^{4}+\frac{1}{6}a^{3}-\frac{1}{3}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{240}a^{6}+\frac{1}{30}a^{5}-\frac{11}{48}a^{4}-\frac{11}{120}a^{3}+\frac{23}{80}a^{2}-\frac{1}{8}a-\frac{33}{80}$
| Monogenic: | No | |
| Index: | $2$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{40}a^{6}-\frac{2}{15}a^{5}-\frac{1}{24}a^{4}+\frac{47}{60}a^{3}-\frac{113}{120}a^{2}+\frac{1}{4}a+\frac{21}{40}$, $\frac{19}{30}a^{6}-\frac{13}{30}a^{5}-\frac{29}{6}a^{4}-\frac{74}{15}a^{3}+\frac{217}{10}a^{2}+\frac{119}{2}a-\frac{1177}{10}$, $\frac{113}{240}a^{6}+\frac{1}{60}a^{5}-\frac{175}{48}a^{4}-\frac{883}{120}a^{3}+\frac{639}{80}a^{2}+\frac{389}{8}a-\frac{3229}{80}$, $\frac{1}{24}a^{6}+\frac{1}{6}a^{5}-\frac{13}{8}a^{4}+\frac{3}{4}a^{3}+\frac{13}{24}a^{2}+\frac{105}{4}a-\frac{345}{8}$
|
| |
| Regulator: | \( 7099.99680901 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{2}\cdot 7099.99680901 \cdot 1}{2\cdot\sqrt{139012099200}}\cr\approx \mathstrut & 3.00712568945 \end{aligned}\]
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for $S_7$ |
| Character table for $S_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | deg 14 |
| Degree 21 sibling: | deg 21 |
| Degree 30 sibling: | deg 30 |
| Degree 35 sibling: | deg 35 |
| Degree 42 siblings: | deg 42, deg 42, deg 42, some data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.7.0.1}{7} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.7.0.1}{7} }$ | ${\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 5.3.1.0a1.1 | $x^{3} + 3 x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(13\)
| 13.1.7.6a1.1 | $x^{7} + 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $$[\ ]_{7}^{2}$$ |